--- AVL trees are a type of self-balancing binary search tree, where the heights
--- of the left and right subtrees of every node differ by at most 1. This
--- ensures that the height of the tree is logarithmic in the number of nodes,
--- which guarantees efficient insertion, deletion, and search operations (all
--- are guaranteed to run in 𝒪(log 𝓃) time).
--- This module defines an AVL tree data type and provides functions for
--- constructing, modifying, and querying AVL trees.
module Stdlib.Data.Set;
import Stdlib.Data.Tree as Tree open using {Tree; Forest};
import Stdlib.Data.Maybe open;
import Stdlib.Data.Result open;
import Stdlib.Data.Nat open;
import Stdlib.Data.Int open;
import Stdlib.Data.Bool open;
import Stdlib.Data.Pair open;
import Stdlib.Data.List open using {List; nil; ::; filter; ++; catMaybes};
import Stdlib.Data.String open;
import Stdlib.Trait.Foldable open hiding {foldr; foldl};
import Stdlib.Function open;
--- A self-balancing AVL binary search tree.
type Set (A : Type) :=
| --- An empty AVL tree.
empty
| --- A node of an AVL tree.
node@{
element : A;
height : Nat;
left : Set A;
right : Set A;
};
module Internal;
--- 𝒪(1) Retrieves the height of an ;Set;. The height is the distance from
--- the root to the deepest child.
height {A} (set : Set A) : Nat :=
case set of
| empty := 0
| node@{height} := height;
--- 𝒪(n). Maps a function over an ;Set;. Does not check if
--- after mapping the order of the elements is preserved. It is the
--- responsibility of the caller to ensure that `f` preserves the ordering.
unsafeMap {A B} (f : A -> B) (set : Set A) : Set B :=
let
go : Set A -> Set B
| empty := empty
| node@{element; height; left; right} :=
node
(f element)
height
(go left)
(go right);
in go set;
type BalanceFactor :=
| --- Left child is higher.
LeanLeft
| --- Equal heights of children.
LeanNone
| --- Right child is higher.
LeanRight;
diffFactor {A} (set : Set A) : Int :=
case set of
| empty := 0
| node@{left; right} := intSubNat (height right) (height left);
balanceFactor' {A} (left right : Set A) : BalanceFactor :=
let
h1 := height left;
h2 := height right;
in if
| h1 < h2 := LeanRight
| h2 < h1 := LeanLeft
| else := LeanNone;
--- 𝒪(1). Computes the balance factor, i.e., the height of the right subtree
--- minus the height of the left subtree.
balanceFactor {A} (set : Set A) : BalanceFactor :=
case set of
| empty := LeanNone
| node@{left; right} := balanceFactor' left right;
--- 𝒪(1). Helper function for creating a node.
mkNode {A} (value : A) (left : Set A) (right : Set A) : Set A :=
node value (1 + max (height left) (height right)) left right;
--- 𝒪(1). Left rotation.
rotateLeft {A} (set : Set A) : Set A :=
case set of
| node x _ a (node z _ b c) := mkNode z (mkNode x a b) c
| n := n;
--- 𝒪(1). Right rotation.
rotateRight {A} (set : Set A) : Set A :=
case set of
| node z _ (node y _ x t3) t4 := mkNode y x (mkNode z t3 t4)
| n := n;
--- 𝒪(1). Applies local rotations if needed.
balance {A} (set : Set A) : Set A :=
case set of
| empty := empty
| node@{element; height; left; right} :=
case balanceFactor' left right of
| LeanRight :=
case balanceFactor right of {
| LeanLeft := rotateLeft (mkNode element left (rotateRight right))
| _ := rotateLeft set
}
| LeanLeft :=
case balanceFactor left of {
| LeanRight :=
rotateRight (mkNode element (rotateLeft left) right)
| _ := rotateRight set
}
| LeanNone := set;
--- 𝒪(𝓃). Checks the ;Set; height invariant. I.e. that
--- every two children do not differ on height by more than 1.
isBalanced {A} : (set : Set A) -> Bool
| empty := true
| set@node@{left; right} :=
isBalanced left && isBalanced right && abs (diffFactor set) <= 1;
end;
open Internal;
--- 𝒪(log 𝓃). Lookup a member from the set using a projection function.
--- Ord A, Ord K and fun must be compatible. i.e cmp_k (fun a1) (fun a2) == cmp_a a1 a2
lookupWith
{A K} {{order : Ord K}} (fun : A -> K) (elem : K) (set : Set A) : Maybe A :=
let
go : Set A -> Maybe A
| empty := nothing
| node@{element; left; right} :=
case Ord.cmp elem (fun element) of
| LessThan := go left
| GreaterThan := go right
| Equal := just element;
in go set;
--- 𝒪(log 𝓃). Queries whether `elem` is in `set`.
lookup {A} {{Ord A}} (elem : A) (set : Set A) : Maybe A :=
lookupWith id elem set;
--- 𝒪(log 𝓃). Queries whether `elem` is in `set`.
isMember {A} {{Ord A}} (elem : A) (set : Set A) : Bool :=
isJust (lookupWith id elem set);
--- 𝒪(log 𝓃). Inserts an element `elem` into `set` using a function to
--- deduplicate entries.
--- Assumption: If a1 == a2 then fun a1 a2 == a1 == a2
--- where == comes from Ord a.
insertWith
{A} {{order : Ord A}} (fun : A -> A -> A) (elem : A) (set : Set A) : Set A :=
let
go : Set A -> Set A
| empty := mkNode elem empty empty
| node@{element; height; left; right} :=
case Ord.cmp elem element of
| LessThan := balance (mkNode element (go left) right)
| GreaterThan := balance (mkNode element left (go right))
| Equal := node (fun element elem) height left right;
in go set;
--- 𝒪(log 𝓃). Inserts `elem` into `set`.
insert {A} {{Ord A}} (elem : A) (set : Set A) : Set A :=
insertWith (flip const) elem set;
--- 𝒪(log 𝓃). Removes the minimum element from `set`.
deleteMin {A} {{Ord A}} : (set : Set A) -> Maybe (Pair A (Set A))
| empty := nothing
| node@{element; left; right} :=
case deleteMin left of
| nothing := just (element, right)
| just (element', left') := just (element', mkNode element left' right);
--- 𝒪(log 𝓃). Removes an element `elem` from `set` based on a projected comparison value.
--- Assumption Ord A and Ord B are compatible: Given a1 a2, A then (fun a1 == fun a2) == (a1 == a2)
deleteWith
{A B}
{{orderA : Ord A}}
{{orderB : Ord B}}
(fun : A -> B)
(elem : B)
(set : Set A)
: Set A :=
let
go : Set A -> Set A
| empty := empty
| node@{element; left; right} :=
case Ord.cmp elem (fun element) of
| LessThan := balance (mkNode element (go left) right)
| GreaterThan := balance (mkNode element left (go right))
| Equal :=
case left of
| empty := right
| _ :=
case deleteMin right of
| nothing := left
| just (minRight, right') :=
balance (mkNode minRight left right');
in go set;
--- 𝒪(log 𝓃). Removes `elem` from `set`.
delete {A} {{Ord A}} (elem : A) (set : Set A) : Set A := deleteWith id elem set;
--- 𝒪(log 𝓃). Returns the minimum element of `set`.
lookupMin {A} : (set : Set A) -> Maybe A
| empty := nothing
| (node y _ empty empty) := just y
| (node _ _ empty r) := lookupMin r
| (node _ _ l _) := lookupMin l;
--- 𝒪(log 𝓃). Returns the maximum element of `set`.
lookupMax {A} : (set : Set A) -> Maybe A
| empty := nothing
| (node y _ empty empty) := just y
| (node _ _ l empty) := lookupMax l
| (node _ _ _ r) := lookupMax r;
--- 𝒪(𝒹 log 𝓃). Deletes elements from `set`.
deleteMany {A} {{Ord A}} (toDelete : List A) (set : Set A) : Set A :=
deleteManyWith id toDelete set;
--- 𝒪(𝒹 log 𝓃). Deletes elements from `set` based on a projected comparison value.
--- Assumption: Ord A and Ord B are compatible, i.e., for a1 a2 in A, we have (fun a1 == fun a2) == (a1 == a2)
deleteManyWith
{A B}
{{Ord A}}
{{Ord B}}
(fun : A -> B)
(toDelete : List B)
(set : Set A)
: Set A :=
for (acc := set) (x in toDelete) {
deleteWith fun x acc
};
--- 𝒪(𝓃 log 𝓃). Create a set from an unsorted ;List;.
fromList {A} {{Ord A}} (list : List A) : Set A :=
for (acc := empty) (x in list) {
insert x acc
};
--- 𝒪(1). Checks if `set` is empty.
isEmpty {A} (set : Set A) : Bool :=
case set of
| empty := true
| node@{} := false;
--- 𝒪(𝓃). Returns the number of elements of `set`.
size {A} : (set : Set A) -> Nat
| empty := 0
| node@{left; right} := 1 + size left + size right;
foldr {A B} (fun : A -> B -> B) (acc : B) : (set : Set A) -> B
| empty := acc
| node@{element; left; right} :=
foldr fun (fun element (foldr fun acc right)) left;
foldl {A B} (fun : B -> A -> B) (acc : B) : (set : Set A) -> B
| empty := acc
| node@{element; left; right} :=
foldl fun (fun (foldl fun acc left) element) right;
instance
polymorphicFoldableSetI : Polymorphic.Foldable Set :=
Polymorphic.mkFoldable@{
for {A B} (f : B -> A -> B) (acc : B) (set : Set A) : B := foldl f acc set;
rfor {A B} (f : B -> A -> B) (acc : B) (set : Set A) : B :=
foldr (flip f) acc set;
};
instance
foldableSetI {A} : Foldable (Set A) A := fromPolymorphicFoldable;
--- 𝒪(n). Returns the elements of `set` in ascending order.
toList {A} (set : Set A) : List A :=
rfor (acc := nil) (x in set) {
x :: acc
};
--- 𝒪(n log n). Returns a set containing the elements that are members of `set1` and `set2`.
intersection {A} {{Ord A}} (set1 set2 : Set A) : Set A :=
for (acc := empty) (x in set1) {
if
| isMember x set2 := insert x acc
| else := acc
};
--- 𝒪(n log n). Returns a set containing the elements that are members of `set1` but not of `set2`.
difference {A} {{Ord A}} (set1 set2 : Set A) : Set A :=
for (acc := empty) (x in set1) {
if
| isMember x set2 := acc
| else := insert x acc
};
--- 𝒪(n log (m + n)). Returns a set containing the elements that are members of
--- `set1` or `set2`. This is a left-biased union of `set1` and `set2` which
--- prefers `set1` when duplicate elements are encountered.
unionLeft {A} {{Ord A}} (set1 set2 : Set A) : Set A :=
for (acc := set2) (x in set1) {
insert x acc
};
--- 𝒪(min(n,m) log min(n, m)). Returns a set containing the elements that are members of `set1` or `set2`.
union {A} {{Ord A}} (set1 set2 : Set A) : Set A :=
if
| height set1 < height set2 := unionLeft set1 set2
| else := unionLeft set2 set1;
--- O(n log n). Returns a set containing the elements that are members of some set in `sets`.
unions
{Container Elem}
{{Ord Elem}}
{{Foldable Container (Set Elem)}}
(sets : Container)
: Set Elem :=
for (acc := empty) (set in sets) {
union acc set
};
--- O(n log n). If `set1` and `set2` are disjoint, then returns `ok set` where
--- `set` is the union of `set1` and `set2`. If `set1` and `set2` are not
--- disjoint, then returns `error x` where `x` is a common element.
disjointUnion {A} {{Ord A}} (set1 set2 : Set A) : Result A (Set A) :=
let
goUnion (set1 set2 : Set A) : Result A (Set A) :=
for (acc := ok set2) (x in set1) {
case acc of
| error _ := acc
| ok set :=
if
| isMember x set2 := error x
| else := ok (insert x set)
};
in if
| height set1 < height set2 := goUnion set1 set2
| else := goUnion set2 set1;
syntax iterator all {init := 0; range := 1};
--- 𝒪(𝓃). Returns ;true; if all elements of `set` satisfy `predicate`.
all {A} (predicate : A -> Bool) (set : Set A) : Bool :=
let
go : Set A -> Bool
| empty := true
| node@{element; left; right} := predicate element && go left && go right;
in go set;
syntax iterator any {init := 0; range := 1};
--- 𝒪(𝓃). Returns ;true; if some element of `set` satisfies `predicate`.
any {A} (predicate : A -> Bool) (set : Set A) : Bool :=
let
go : Set A -> Bool
| empty := true
| node@{element; left; right} := predicate element || go left || go right;
in go set;
syntax iterator filter {init := 0; range := 1};
--- 𝒪(n log n). Returns a set containing all elements of `set` that satisfy `predicate`.
filter {A} {{Ord A}} (predicate : A -> Bool) (set : Set A) : Set A :=
for (acc := empty) (x in set) {
if
| predicate x := insert x acc
| else := acc
};
syntax iterator partition {init := 0; range := 1};
partition
{A} {{Ord A}} (predicate : A -> Bool) (set : Set A) : Pair (Set A) (Set A) :=
for (trueSet, falseSet := empty, empty) (x in set) {
if
| predicate x := insert x trueSet, falseSet
| else := trueSet, insert x falseSet
};
--- 𝒪(1). Creates a set with a single element `elem`.
singleton {A} (elem : A) : Set A := mkNode elem empty empty;
--- 𝒪(n log n). Checks if all elements of `set1` are in `set2`.
isSubset {A} {{Ord A}} (set1 set2 : Set A) : Bool :=
all (x in set1) {
isMember x set2
};
syntax iterator map {init := 0; range := 1};
map {A B} {{Ord B}} (fun : A -> B) (set : Set A) : Set B :=
for (acc := empty) (x in set) {
insert (fun x) acc
};
--- Formats the set in a debug friendly format.
prettyDebug {A} {{Show A}} (set : Set A) : String :=
let
go : Set A -> String
| empty := "_"
| set@node@{element; left; right} :=
"("
++str go left
++str " h"
++str Show.show (diffFactor set)
++str " "
++str Show.show element
++str " "
++str go right
++str ")";
in go set;
--- 𝒪(𝓃).
toTree {A} : (set : Set A) -> Maybe (Tree A)
| empty := nothing
| node@{element; left; right} :=
just (Tree.node element (catMaybes (toTree left :: toTree right :: nil)));
--- Returns the textual representation of an ;Set;.
pretty {A} {{Show A}} (set : Set A) : String :=
maybe "empty" Tree.treeToString (toTree set);
instance
eqSetI {A} {{Eq A}} : Eq (Set A) := mkEq (Eq.eq on toList);
instance
ordSetI {A} {{Ord A}} : Ord (Set A) := mkOrd (Ord.cmp on toList);