module Juvix.Builtin.V1.Nat.Base;

import Juvix.Builtin.V1.Fixity open;

--- Inductive natural numbers. I.e. whole non-negative numbers.
builtin nat
type Nat :=
  | zero
  | suc Nat;

syntax operator + additive;

--- Addition for ;Nat;s.
builtin nat-plus
+ : Nat  Nat  Nat
  | zero b := b
  | (suc a) b := suc (a + b);

syntax operator * multiplicative;

--- Multiplication for ;Nat;s.
builtin nat-mul
* : Nat  Nat  Nat
  | zero _ := zero
  | (suc a) b := b + a * b;

--- Truncated subtraction for ;Nat;s.
builtin nat-sub
sub : Nat  Nat  Nat
  | zero _ := zero
  | n zero := n
  | (suc n) (suc m) := sub n m;

--- Division for ;Nat;s. Returns ;zero; if the first element is ;zero;.
builtin nat-udiv
terminating
udiv : Nat  Nat  Nat
  | zero _ := zero
  | n m := suc (udiv (sub n m) m);

--- Division for ;Nat;s.
builtin nat-div
div (n m : Nat) : Nat := udiv (sub (suc n) m) m;

--- Modulo for ;Nat;s.
builtin nat-mod
mod (n m : Nat) : Nat := sub n (div n m * m);
Last modified on 2023-12-07 10:36 UTC