module Juvix.Builtin.V1.Nat.Base;
import Juvix.Builtin.V1.Fixity open;
--- Inductive natural numbers. I.e. whole non-negative numbers.
builtin nat
type Nat :=
| zero
| suc Nat;
syntax operator + additive;
--- Addition for ;Nat;s.
builtin nat-plus
+ : Nat → Nat → Nat
| zero b := b
| (suc a) b := suc (a + b);
syntax operator * multiplicative;
--- Multiplication for ;Nat;s.
builtin nat-mul
* : Nat → Nat → Nat
| zero _ := zero
| (suc a) b := b + a * b;
--- Truncated subtraction for ;Nat;s.
builtin nat-sub
sub : Nat → Nat → Nat
| zero _ := zero
| n zero := n
| (suc n) (suc m) := sub n m;
--- Division for ;Nat;s. Returns ;zero; if the first element is ;zero;.
builtin nat-udiv
terminating
udiv : Nat → Nat → Nat
| zero _ := zero
| n m := suc (udiv (sub n m) m);
--- Division for ;Nat;s.
builtin nat-div
div (n m : Nat) : Nat := udiv (sub (suc n) m) m;
--- Modulo for ;Nat;s.
builtin nat-mod
mod (n m : Nat) : Nat := sub n (div n m * m);
Last modified on 2023-12-07 10:36 UTC