

 Anoma

 v0.25.0

 Table of contents

 	Anoma

 	Analysis

 	Contributing

 	TOC

 	Contributors Guide

 	Examples over Testing

 	Git

 	IEx

 	Mnesia Vs Actor State

 	Observer

 	Style Guide

 	Testing

 	Running Tests

 	Writing Tests

 	Understanding any code in Anoma

 	Writing Documents

 	Visualizing Anoma

 	Visualizing Anoma

 	The Actors

 	Nock Environment

 	Hoon

 	Calling

 	Dumping

 	Setting up Hoon

 	

 	Modules

 	Anoma.Constants

 	Anoma.Supervisor

 	Anoma.System.Directories

 	Anoma.TransparentResource

 	Anoma.TransparentResource.Action

 	Anoma.TransparentResource.Delta

 	Anoma.TransparentResource.LogicProof

 	Anoma.TransparentResource.Resource

 	Anoma.TransparentResource.Transaction

 	Glossary

 	IdentityMap

 	Livebook

 	MapSetMap

 	Resource Machine

 	Anoma.RM.DumbIntent

 	Anoma.RM.Intent

 	Anoma.RM.Trans

 	Anoma.RM.Transaction

 	Anoma.ShieldedResource

 	Anoma.ShieldedResource.ComplianceInput

 	Anoma.ShieldedResource.ComplianceOutput

 	Anoma.ShieldedResource.PartialTransaction

 	Anoma.ShieldedResource.ProofRecord

 	Anoma.ShieldedResource.ShieldedTransaction

 	Anoma Actors

 	Anoma.Node

 	Intents

 	Anoma.Node.Intents.IntentPool

 	Anoma.Node.Intents.IntentPool.NullifierFilter

 	Anoma.Node.Intents.Solver

 	Anoma.Node.Intents.Supervisor

 	Transport

 	Anoma.Node.Transport

 	Anoma.Node.Transport.EngineProxy

 	Anoma.Node.Transport.GRPC.Endpoint

 	Anoma.Node.Transport.GRPC.Server

 	Anoma.Node.Transport.Messages

 	Anoma.Node.Transport.Supervisor

 	Anoma.Node.Transport.TCP.Connection

 	Anoma.Node.Transport.TCP.Listener

 	Examples

 	Examples.ECommitmentTree

 	Examples.ECrypto

 	Examples.ENock

 	Examples.ETransparent.EAction

 	Examples.ETransparent.ELogicProof

 	Examples.ETransparent.EResource

 	Cryptographic Primitives

 	Anoma.Crypto.Encrypt

 	Anoma.Crypto.Id

 	Anoma.Crypto.Id.Extern

 	Anoma.Crypto.Id.Intern

 	Anoma.Crypto.Randomness

 	Anoma.Crypto.Sign

 	Anoma.Crypto.Symmetric

 	General Engines

 	Anoma.Node.DummyStorage

 	Anoma.Node.Event

 	Anoma.Node.Event.NodeFilter

 	Anoma.Node.Examples.EIntentPool

 	Anoma.Node.Examples.ELogging

 	Anoma.Node.Examples.ENode

 	Anoma.Node.Examples.ERegistry

 	Anoma.Node.Examples.ESolver

 	Anoma.Node.Examples.ETransaction

 	Anoma.Node.Examples.ETransport

 	Anoma.Node.Examples.ETransport.ETcp

 	Anoma.Node.Examples.ETransport.ETcp.Context

 	Anoma.Node.Logging

 	Anoma.Node.Logging.LoggingEvent

 	Anoma.Node.Logging.LoggingFilter

 	Anoma.Node.Registry

 	Anoma.Node.Registry.Address

 	Anoma.Node.Supervisor

 	Anoma.Node.Transaction.Backends

 	Anoma.Node.Transaction.Backends.CompleteEvent

 	Anoma.Node.Transaction.Backends.CompleteFilter

 	Anoma.Node.Transaction.Backends.ForMempoolFilter

 	Anoma.Node.Transaction.Backends.NullifierEvent

 	Anoma.Node.Transaction.Backends.ResultEvent

 	Anoma.Node.Transaction.Executor

 	Anoma.Node.Transaction.Executor.ExecutionEvent

 	Anoma.Node.Transaction.Mempool

 	Anoma.Node.Transaction.Mempool.BlockEvent

 	Anoma.Node.Transaction.Mempool.ConsensusEvent

 	Anoma.Node.Transaction.Mempool.Tx

 	Anoma.Node.Transaction.Mempool.TxEvent

 	Anoma.Node.Transaction.Ordering

 	Anoma.Node.Transaction.Ordering.OrderEvent

 	Anoma.Node.Transaction.Ordering.TxIdFilter

 	Anoma.Node.Transaction.Storage

 	Anoma.Node.Transaction.Storage.HeightFilter

 	Anoma.Node.Transaction.Storage.WriteEvent

 	Anoma.Node.Transaction.Supervisor

 	CLI Engine

 	Anoma.Client

 	Anoma.Client.Api.Endpoint

 	Anoma.Client.Api.Server

 	Anoma.Client.Application

 	Anoma.Client.CLI

 	Anoma.Client.Connection.GRPCProxy

 	Anoma.Client.Connection.Supervisor

 	Anoma.Client.Connection.TCP

 	Anoma.Client.Examples.EClient

 	Anoma.Client.Examples.EClient.EConnection

 	Anoma.Client.Examples.EProxy

 	Nock

 	Nock

 	Nock.Bits

 	Nock.Cli

 	Nock.Cue

 	Nock.Jam

 	Nock.Jets

 	Noun

 	Noun.Format

 	Noun.Nounable

 	Noun.Nounable.Kind

 	CommitmentTree

 	CommitmentTree

 	CommitmentTree.Node

 	CommitmentTree.Proof

 	CommitmentTree.Spec

 	EventBroker

 	EventBroker

 	EventBroker.Broker

 	EventBroker.DefFilter

 	EventBroker.Event

 	EventBroker.Filter

 	EventBroker.FilterAgent

 	EventBroker.Filters

 	EventBroker.Filters.LessTrivial

 	EventBroker.Filters.ManyFields

 	EventBroker.Filters.SourceModule

 	EventBroker.Filters.Trivial

 	EventBroker.Registry

 	EventBroker.Supervisor

 	Utilities

 	Anoma.Utility

 	Test Helpers

 	TestHelper.GenerateExampleTests

 	TestHelper.Nock

 	TestHelper.TestMacro

 	Exceptions

 	Anoma.TransparentResource.Delta.DeltaError

 	Mix Tasks

 	mix compile.protoc

 	mix toc

Anoma

This is an implementation of the Anoma protocol, whose specs can be
found here.

 Docs

	Contributors documentation
	Specification
	Developer Docs (Coming Soon™)
	User Docs (Coming Soon™)

 Following Development

Work is merged into base on a bi-weekly (once every two weeks)
schedule.
Development can be followed in multiple ways:
	Issues are put into the project overview	This is a good way to see what work is assigned and the various
views into how goals are being met

	What's Cooking on Anoma
	Research Forums	This is good for seeing discussions on the direction of Anoma
	The architecture posts
in particular are a practical vision for how the codebase's
architecture will evolve. Around two of these get posted per week

	Issues and pull requests	This is good for viewing new issues and work coming in, but the
other views are typically a better way to view this

 Running pre-built binaries

 Release Dependencies

To run a working Anoma Node the following dependencies are required:
	Mac OS X Development Environment:	Install Apple Command Line Developer Tools: xcode-select --install
	Install MacPorts (or equivalent package manager)

	Install ncurses (Mac OS X only)
	Install OpenSSL:	Mac OS X and Linux: use package manager
	Windows: not required

 Running

Download the Anoma release for your platform, extract it, and run bin/anoma.

 Compilation from sources

 Build Dependencies

To compile a working Anoma Node the following dependencies are required:
	Mac OS X Development Environment:	Install Apple Command Line Developer Tools: xcode-select --install
	Install MacPorts (or equivalent package manager)

	Windows Development Environment:	Install Build Tools for Visual Studio 2022 (Workload: Visual C++ build tools)
	Install PowerShell

	Install Git (Windows and Linux only)
	Install CMake:	Linux and Mac OS X: use package manager
	Windows: not required

	Install Sodium (Windows only)	Ensure that the LIB and INCLUDE environment variables point to this installation

	Install Protocol Buffers
	Install Elixir (version 1.17.0 or higher) and with it:	Install Hex package manager
	Install Rebar3
	Install protobuf-elixir: mix escript.install hex protobuf

	Install Rust (version 1.76.0 or newer)

 Compiling and Running

To install the dependencies as well as Anoma run:
mix deps.get
mix escript.install hex protobuf
mix compile

To start an Anoma instance run one of these:
iex -S mix # starts an interactive shell
mix run --no-halt # starts a non-interactive shell

See the Contributing section for how to get the best use of the
interactive shell.
Further see the Known issues section if you encounter an issue.

 Docker images

To work with Docker images, do the following:
	Install Docker, this is necessary for both building and running Docker images
	Build the Anoma image from the repository root: docker build -t <IMAGE> .	<IMAGE> is your chosen image name

	Run the Anoma image: docker run -it --network host <IMAGE> <SUBCOMMAND>	<IMAGE> is the name of Anoma Docker image to be run
	<SUBCOMMAND>is interpreted by the Anoma binary
	--network host will enable connections from the host

 Contributing

Please read the contributor's guide for in
depth details about the codebase.

 Known Issues

 (Mix) Could not compile dependency :enacl

For some versions of OSX (and Linux), our
enacl package may have compilation issues.
To get around it please run
git checkout mariari/no-libsodium
mix clean
mix deps.get
mix compile

 could not compile dependency :cairo, "mix compile"

The rust compiler can be quite picky about our
cairo dependencies. This is
likely caused by an incompatible rust-toolchain.
To get around it you may have to run a command like:
rustup toolchain add 1.76.0
for OSX you may try 1.76.0-aarch64-apple-darwin

Once this is had, the Cairo issues should go away.

 Git

This codebase follows a git style similar to
git or
linux.
New code should be based on base, and no attempt to keep it up to
sync with main should be had. When one's topic is ready, just submit
a PR on github and a maintainer will handle any merge conflicts.
There are bi-weekly releases, so do not be afraid if a maintainer says
the PR is merged but it's still open, this just means that it's merged
into next or main and will be included in the next scheduled
release.
For more information on a smooth git experience check out the git
section in contributor's guide
Happy hacking, and don't be afraid to submit patches.

Analysis

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 Analysis

Documents in this section cover analysis over the code in the repository.

Contributing

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 Contributing

Documents in this section cover getting started and contributing back to Anoma.
Please feel free to contribute to these docs and improve them! For tips on how to write documents, please refer to the Writing Documents

TOC

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 TOC

This notebook organizes a set of lessons to help you get started with Anoma!
This book uses livebook, it is best viewed from within it! However most sections can be viewed fine in github or your text editor.

Examples over Testing

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 Intro

In complex software projects, there are a variety of automated tools employed to make sure the system works as intended. The two most popular examples are tests and type systems. As of the time of this writing, the Anoma codebase has embraced both of these; having a 73% test coverage and the majority of functions with type signatures!
This article will focus on the downside of testing in elixir, and give a compelling argument for examples over testing!

 What are Examples

The word testing in the context of software development is widely understood, however the term examples does not have the same level of recognition.
In order to clarify the meaning within Anoma, we will take Glamorous Toolkit's definition of example, as they have created a well-thought-out system that successfully replaces most tests with examples
According to Glamorous Toolkit examples are:
"a way of demonstrating how to use the system and check that it is operating correctly.
They are similar to SUnit tests in that they make assertions to confirm that the system is operating correctly, but unlike SUnit tests, which typically don't return anything, they answer an object which is useful in its own right."
For the purposes of discussion, we can consider SUnit and ExUnit to be the same. Meaning that there are large overlaps in the practical function between examples and tests.

 Downsides of testing in Elixir

To get a feeling for what examples can offer the codebase, we should first discuss the downsides with how Anoma interacts with tests.
	Tests are not loaded into IEx at startup.
	To run tests by hand, we need to copy paste:	Imports.
	setup_all logic.
	the test up until the point we care about.

	Tests can't be abstracted in the test module without breaking copy and pasting.
	Tests can't have dialyzer run over them.
	IEx does not re-run tests on demand, one has to recompile the test after already running the tests
	LSP seems to not be able to calculate references of values to tests due to them not being compiled.

 How would Examples work in Elixir?

Before we go and talk about addressing the issues with testing, let us first envision how we would go about making examples. Below are rules that we can apply to creating our very first examples.
	They belong in a module example/e<module-name>. Where module-name is the module one is interested in testing.
	Any piece of logic that is relied upon by other parts, is an example.
	If any code spawns actors, they should either register themselves or be memoized.
	We should run asserts on data whenever possible.

For demonstration purposes, let us take the most common kinds of tests we have and imagine what they would look like as examples
	The first kind of test is testing non actors.
	The second kind of test is testing stateful actors.

Tests in the first category tend to care about the form of data and making assertions about said data, while the second category is more about testing the interactions between multiple actors and the final state they produce.
The translation of tests in classification 2. into examples can be split into two phases:
	The first phase will cover translating the setup state as global examples. This is not perfect but maintains the same semantics as the test.
	The second phase will make the global setup logic specific per example, making stateful examples return the final network state.

 Examplifying non Actors

A good example we can use, is a test in our resource test file.
defmodule AnomaTest.Resource do
 test "commitments and nullifiers" do
 keypair_a = Sign.new_keypair()
 keypair_b = Sign.new_keypair()

 a_r1 = new_with_npk(keypair_a.public)
 a_r2 = new_with_npk(keypair_a.public)
 b_r0 = new_with_npk(keypair_b.public)

 # just in case
 assert a_r1 != a_r2

 c_a_r1 = commitment(a_r1)
 c_a_r2 = commitment(a_r2)
 c_b_r0 = commitment(b_r0)

 n_a_r1 = nullifier(a_r1, keypair_a.secret)
 n_a_r2 = nullifier(a_r2, keypair_a.secret)
 n_b_r0 = nullifier(b_r0, keypair_b.secret)

 assert c_a_r1 |> commits_to(a_r1)
 refute c_a_r1 |> commits_to(a_r2)
 refute c_a_r1 |> commits_to(b_r0)

 refute c_a_r2 |> commits_to(a_r1)
 assert c_a_r2 |> commits_to(a_r2)
 refute c_a_r2 |> commits_to(b_r0)

 refute c_b_r0 |> commits_to(a_r1)
 refute c_b_r0 |> commits_to(a_r2)
 assert c_b_r0 |> commits_to(b_r0)

 assert n_a_r1 |> nullifies(a_r1)
 refute n_a_r1 |> nullifies(a_r2)
 refute n_a_r1 |> nullifies(b_r0)

 refute n_a_r2 |> nullifies(a_r1)
 assert n_a_r2 |> nullifies(a_r2)
 refute n_a_r2 |> nullifies(b_r0)

 refute n_b_r0 |> nullifies(a_r1)
 refute n_b_r0 |> nullifies(a_r2)
 assert n_b_r0 |> nullifies(b_r0)
 end

 test "nullify with wrong key" do
 keypair_a = Sign.new_keypair()
 keypair_b = Sign.new_keypair()

 a_resource = new_with_npk(keypair_a.public)
 wrong_nullifier = nullifier(a_resource, keypair_b.secret)

 refute wrong_nullifier |> nullifies(a_resource)
 end
end
The crux of this module is creating some resources, and testing that they behave properly!
However since tests are not composable, we have to waste time recreating more resources in another test!
If we were to reimagine this test as an example it would look something like this.
defmodule Example.EResource do
 # Memoize it as we want it to always be the same!
 defmemo(keypair_a(), do: Sign.new_keypair())
 defmemo(keypair_b(), do: Sign.new_keypair())

 # new_with_npk gives new resources, so memo again
 defmemo(a_resource(), do: new_with_npk(keypair_a().public))
 defmemo(b_resource(), do: new_with_npk(keypair_b().public))
 defmemo(a2_resource(), do: new_with_npk(keypair_a().public))

 # Now we get interesting
 def commit_a() do
 commitment = commitment(a_resource())
 assert commitment |> commits_to(a_resource())
 refute commitment |> commits_to(b_resource())
 commitment
 end

 def commit_a2() do
 commitment = commitment(a2_resource())
 assert commitment |> commits_to(a2_resource())
 refute commitment |> commits_to(a_resource())
 assert commitment != commit_a()
 commitment
 end

 def commit_b() do
 commitment = commitment(a2_resource())
 assert commitment |> commits_to(b_resource())
 refute commitment |> commits_to(a_resource())
 commitment
 end

 def nullifier_a() do
 nullifier = nullifies(a_resource(), keypair_a().private)
 assert nullifier |> nullifies(a_resource())
 refute nullifier |> nullifies(b_resource())
 nullifier
 end

 def nullifier_a2() do
 nullifier = nullifies(a_resource(), keypair_a2().private)
 assert nullifier |> nullifies(a2_resource())
 refute nullifier |> nullifies(a_resource())
 assert nullifier != nullifier_a()
 nullifier
 end

 def nullifier_b() do
 nullifier = nullifies(b_resource(), keypair_b().private)
 assert nullifier |> nullifies(b_resource())
 refute nullifier |> nullifies(a_resource())
 nullifier
 end

 def invalid_nullifier() do
 nullifier = nullifies(a_resource(), keypair_b().private)
 refute nullifier |> nullifies(a_resource())
 nullifier
 end
end
Although this code is 5 more lines of code, it has many strong properties:
	Each component is now a top level name. Meaning we can now play with nullifier_a in IEx. No copy and pasting needed!
	We can add type signatures for each definition, to ensure we have type checking and writing down our own intents!
	We didn't need to unnecessarily generate extra keys, and resources. We can reuse them!
	We are writing properties about the data we wish to have.
	Any other example files can rely on this example file! (hint maybe our next example will use this one)

Point 4. should be expanded upon. In a test, one is testing many things at once, but what makes examples strong is that we are denoting the dynamic properties we wish data to respect! Because we are doing this on a data basis, it becomes easy to later come back to these and add new facts to the examples.
Tests discourage this, as they have a singular purpose they exist for, they do not encourage good behavior!
Further, if we were to not do a 1 to 1 extraction, we could factor some of the data here to Signature examples as well! We will see how this principle works out in practice in the next section.

 Examplifying stateful code

defmodule AnomaTest.Node.Executor.Worker do
 use ExUnit.Case, async: true

 setup_all do
 storage = %Storage{
 qualified: AnomaTest.Worker.Qualified,
 order: AnomaTest.Worker.Order
 }

 {:ok, router, _} = Anoma.Node.Router.start()

 {:ok, storage} =
 Anoma.Node.Router.start_engine(router, Storage, storage)

 {:ok, ordering} =
 Anoma.Node.Router.start_engine(router, Ordering, table: storage)

 snapshot_path = [:my_special_nock_snaphsot | 0]

 env = %Nock{snapshot_path: snapshot_path, ordering: ordering}

 [env: env]
 end

 test "worker evaluates resource transaction", %{env: env} do
 import Anoma.Resource
 alias Anoma.Resource.ProofRecord
 alias Anoma.Resource.Transaction

 id = System.unique_integer([:positive])

 storage = Ordering.get_storage(env.ordering)

 Storage.ensure_new(storage)
 Ordering.reset(env.ordering)

 keypair = Anoma.Crypto.Sign.new_keypair()

 in_resource = %{
 new_with_npk(keypair.public)
 | label: "space bucks",
 quantity: 10
 }

 nf_in = nullifier(in_resource, keypair.secret)
 pf_in = ProofRecord.prove(in_resource)

 out_resource = %{
 new_with_npk(keypair.public)
 | label: "space bucks",
 quantity: 10
 }

 cm_out = commitment(out_resource)
 pf_out = ProofRecord.prove(out_resource)

 rm_tx = %Transaction{
 commitments: [cm_out],
 nullifiers: [nf_in],
 proofs: [pf_in, pf_out],
 delta: %{}
 }

 rm_tx_noun = Transaction.to_noun(rm_tx)
 rm_executor_tx = [[1 | rm_tx_noun], 0 | 0]

 spawn = Task.async(Worker, :run, [id, {:rm, rm_executor_tx}, env])
 Ordering.new_order(env.ordering, [Order.new(0, id, spawn.pid)])

 send(spawn.pid, {:write_ready, 0})
 assert :ok == Task.await(spawn)
 end
end
This test has a few parts, one part is a test_setup and another part is the actual testing code itself.
I will reimagine this module in two phases. The first respecting the fact that setup_all is unique and is efficient as it spawns only 1 network for the entire module. The second will instead make the node specific to each example that relies upon it. Returning the network as the interesting object.
defmodule Example.Worker.Phase1 do

 defmemo router() do
 assert {:ok, router, _} = Router.start()
 router
 end

 def raw_storage() do
 storage = %Storage{
 qualified: AnomaTest.Worker.Qualified,
 order: AnomaTest.Worker.Order
 }
 end

 defmemo storage() do
 {:ok, storage} = Router.start_engine(router(), Storage, raw_storage())
 storage
 end

 defmemo ordering() do
 {:ok, ordering} = Router.start_engine(router(), Ordering, table: storage())
 ordering
 end

 def env() do
 %Nock{snapshot_path: Enock.snapshot_path(), ordering: ordering}
 end

 # Let's get an unique number
 defmemo unique_id() do
 System.unique_integer([:positive])
 end

 def successfully_fire_trans() do
 Storage.ensure_new(storage())
 Ordering.reset(ordering())

 spawn = Task.async(Worker, :run, [id, {:rm, space_trans_candidate()}, env()])
 Ordering.new_order(ordering(), [Order.new(0, id, spawn.pid)])

 send(spawn.pid, {:write_ready, 0})
 assert :ok == Task.await(spawn)
 :ok
 end
end

defmodule Example.ProofRecord do
 def proved_spacebucks_a() do
 ProofRecord.prove(Eresource.space_bucks_10_a())
 end

 def proved_spacebucks_b() do
 ProofRecord.prove(Eresource.space_bucks_10_b())
 end
end

defmodule Example.Transaction do
 def balanced_space_transaction() do
 trans = %Transaction{
 commitments: [EResource.commitment_space_bucks_a()]
 nullifiers: [ERsource.nullifier_space_bucks_b()],
 proofs: [proved_spacebucks_a(), proved_spacebucks_b()]
 }
 # This wans't in the original test!
 assert verify(trans)
 trans
 end

 def space_trans_candidate() do
 Transaction.to_noun(balanced_space_transaction())
 [[1 | rm_tx_noun], 0 | 0]
 end
end
Notice we ended up calling a lot of examples from EResource. Some of the examples already existed even without this test (we really had spacebucks already in the codebase! Duplicated in the Worker and in Resource).
Further most of the logic that recreates resources are better placed in the actual Example.EResource file, as they are relevant examples for someone who is looking for resources. Why would they look at the worker to see examples of the Resources? Likewise, people who are looking at the worker code, would want to look at worker logic, not resource logic!
We can see the benefits examples offer even stateful tests:
	Most of the boilerplate of creating unrelated types are confined in the proper modules!
	There may be an example off hand which satisfies what we want (we already had spacebucks in EResource)
	Rephrasing a test as an example doesn't lose any information. the actual example is simply not interesting!
	We can run the stateful tests from IEx and even pry into it without any issues!

With these benefits of mind let us see if Phase2 can improve point 3. a bit:
defmodule Example.Worker.Phase2 do
 def router() do
 assert {:ok, router, _} = Router.start()
 router
 end

 def raw_storage() do
 storage = %Storage{
 qualified: AnomaTest.Worker.Qualified,
 order: AnomaTest.Worker.Order
 }
 end

 def storage(router) do
 {:ok, storage} = Router.start_engine(router, Storage, raw_storage())
 storage
 end

 def ordering(router, storage) do
 {:ok, ordering} = Router.start_engine(router, Ordering, table: storage)
 ordering
 end

 def env(ordering) do
 %Nock{snapshot_path: Enock.snapshot_path(), ordering: ordering}
 end

 def network() do
 router = router()
 storage = storage(router)
 %Node{router: router, ordering: ordering(router, storage), storage: storage}
 end

 # Let's get an unique number
 defmemo unique_id() do
 System.unique_integer([:positive])
 end

 def successfully_fire_trans() do
 net = network()
 env = env(net.ordering)
 spawn = Task.async(Worker, :run, [id, {:rm, space_trans_candidate()}, env])
 Ordering.new_order(net.ordering, [Order.new(0, id, spawn.pid)])

 send(spawn.pid, {:write_ready, 0})
 assert :ok == Task.await(spawn)
 net
 end
end
In Phase2 we abstracted out some examples, so that they are no longer standalone examples.
Sadly storage, router, env and ordering are no longer examples, but are generator functions for the data we care about. (maybe we can restore this somehow!)
However, notice that the return of sucessfully_fire_trans/0, now returns the network!
This means that if we wanted, we can use this environment for further tests. Such as making sure nullifiers don't insert twice
def failed_trans() do
 net = succesfully_fire_trans()
 env = env(net.ordering)
 spawn = Task.async(Worker, :run, [id, {:rm, space_trans_candidate()}, env])
 Ordering.new_order(net.ordering, [Order.new(0, id, spawn.pid)])
 assert :error == Task.await(spawn)
 for nullifier <- space_trans_candidate().nullifiers do
 assert in_nullifer_set(env, nullifier)
 end
 net
end
Besides reuse we get the following advantages in Phase2:
	If we had visualization tooling, we can take the result of successfully_fire_trans/0 and view all the views of the data. Meaning that if we made tooling that charts simulated latency, connected node graphs, successful and failed transactions, we would be able to chart them all and visually see the difference between this one and failed_trans/0.
	We can inspect the state of the network querying for new facts we did not know about before. And consider if any facts are interesting enough to assert that the property holds in the particular example.

 Temporary Setbacks

One small annoyance, is that in order to run the tests, we have to currently by hand put the examples in a test file to make sure they are ran.
This can be offset by a macro that scrapes the examples modules and automatically registers the tests. So this is not a hard issue for the example style.

 Addressing testing issues

Now that we have a concrete idea of what examples look like, let us see how they fix our problems with tests:
	Tests are not loaded into IEx at startup.	They are in the lib folder, they are loaded!

	To run tests by hand, we need to copy paste:	No copy and pasting required, we can pry and avoid copy and paste!

	Tests can't be abstracted in the test module without breaking copy and pasting.	We can abstract as much as we want

	Tests can't have dialyzer run over them.	We can run dialyzer and even type our examples!

	IEx does not re-run tests on demand, one has to recompile the test after already running the tests	We can re-run the example whenever we want

	LSP seems to not be able to calculate references of values to tests due to them not being compiled.	LSP should work as it's compiled like everything else.

 Outstanding questions

The most straight forward strategy would be:
	Take each test module and convert it to tests.
	Once most of the modules are done, convert all stateful tests into phase2.

However there are open questions:
	How slow is node setup? Will phase2 make tests run longer than 2 seconds (unacceptable)?
	How long until we have a macro that auto registers the examples so they can be ran with mix test?
	How will our usage of examples evolve over time?
	How to deal with tests that make socket files then deletes them after all is done? Will Phase2 make this question obsolete?
	Can the process be improved? One of the Authors of GT has a paper about converting JUnit to JExample. This can probably inform our own transition and ideas on creating examples

Git

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 Git

Git is a decent version control(VC) system, however there are ways to
make the VC process a lot smoother.
This document is best viewed from within liveview, as the charts do not render on github currently.

 Terminology

	topic - this is any branch that serves to fix some problem in the
codebase

	feature - some new concept to the codebase. Many topics can serve
to fulfill one feature.

	release - A release of the code. This is a git tag on main
that signifies a new version of the software. This typically bumps
base to the latest release as well

	base - the base branch one should base work off of

	main - sometimes called master, is the branch that prepares for
a release.

	next - a branch that has a superset of features that will be
included in the next release

	maint - a maintnance branch that will be updated if bugs are found

	integreation branch - a topic that merges a bunch of other topics

 Naming conventions

Name your topic like name/feature to avoid clashing with other
people's topics.
There are some standard branches that do not follow this pattern but
those are described in the Terminology section of this document

 General Principles

These are some general principles which should help maintainers easily
integrate your code, and have your work help out other devs on the
codebase.

 Do not include unrelated changes into your commits

	For example, if you see some unrelated bug in the same file as your
own, don't fix it in your general commit, make a new topic based on
when the bug was introduced and merge that into your topic if it
impacts your topic.

	This makes reviewing much easier as the reviewer can read your
commit message and see changes only related to that included

 Make topics early and often!

This allows your work to be incrementally integrated into a
release. If you put all your work into one topic, bug fixes and all,
then the following will occur
	The changes will not be reviewed properly
	On big projects with tight deadlines, sometimes some feature
X is wanted. However if X is a single topic with a messy
history, the only options are either to scrap the feature or
accept it as is poor code in all.
	If this was properly split up parts of X could be merged
now, with the more controversial features being held up in
next, without having to sacrifice the quality of the
codebase.

	Other team members can not share similar work
	Often a lot of different tasks, may find the same
deficiencies in the codebase.

	For a real example, let's take the following commit and topic
802ab9e * anoma/mariari/nock-testing-file Move the helper functions
73bfd7d * v0.3.0
 2 files changed, 44 insertions(+), 34 deletions(-)
lib/test_helper/nock.ex | 43 +++
test/nock_test.exs | 35 +----------------------------------
Here we find that we mariari moved some testing functions from
test/ to lib/, as elixir tests don't share code in the best
way. This allows other files in test/ to reuse the same
functions that were previously found in test/nock_test.exs. In
fact there are multiple topics that ended up using this. Both the
executor topic and worker topic
	8de0c7e anoma/mariari/worker	1d6bc99 anoma/mariari/executor

both needed this. Since the worker relies upon the executor,
they both don't merge in this topic separately, but if they
were separate they would want to share this change.

	If these changes were orchestrated by different people, then
they would have made this change twice! Meaning that in the git
history the work has been done in different commits! This means
that when it comes time to merge in work, there will be a
conflict between these two. Rather than being able to reuse
other's work and save other devs time, this will come up when
reviewers read the code, with unrelated changes, or when the
maintainers try to merge things together and find annoying
conflicts

	Work can not be incrementally included
	Others might just do the work before you

	If one is too slow on finishing their topic and making it one big
commit, then someone else might redo the same work and put it up
for review, but instead of them reusing your code, they wrote it
from scratch, wasting both your time and their time.

 Base topics on base

Basing code on main has the following errors:
	Code merged in main before a release may turn out to have issues
	Git merges and conflict resolutions lead to spurious base points
	Other topics can not reuse your code
	Useless temporal history is had

Basing on someone's topic that you require and will merge in anyways
is fine.

 Code merged in main before a release may turn out to have issues

Imagine main has the following history
%%{init:
{ 'logLevel': 'debug',
 'theme': 'forest',
 'gitGraph': {'showBranches': true,
 'showCommitLabel':true,
 'mainBranchName': 'base'}} }%%
gitGraph TB:
commit id: "73bfd7d" tag: "v0.3.0"
branch Topic-Y
commit id: "4381bd3"
checkout base
merge Topic-Y id: "52b44a6"
and your code hapens to be base on 52b44a6, then the history will look something like:
%%{init:
{ 'logLevel': 'debug',
 'theme': 'forest',
 'gitGraph': {'showBranches': true,
 'showCommitLabel':true,
 'mainBranchName': 'my-cool-feature'}} }%%
gitGraph TB:
commit id: "73bfd7d" tag: "v0.3.0"
branch Topic-Y
commit id: "4381bd3"
checkout my-cool-feature
merge Topic-Y id: "52b44a6: main merge feature-y"
commit id: "7dabf44"
Later before a release, we find out that Topic-Y has issues, and any
code that is based on Topic-Y will have to sit this release
out. Normally to check for this, the protocol is quite simple we just:
	Do not include any topics that are based on Topic-Y or merges
Topic-Y into the release
	Pull any topic based on Topic-Y from main

becomes muddied, as if one's topic was based on main after Topic-Y
is in, then it's unclear if that topic is unaffected.
Thus my-cool-feature may be cut from the release, even if it was
perfectly fine and did not rely on Topic-Y.

 Git merges and conflict resolutions lead to spurious base points

Further, if we have two topics my-feature-x and my-feature-y based
on main, then the history would look something like this
%%{init:
{ 'logLevel': 'debug',
 'theme': 'forest',
 'gitGraph': {'showBranches': true,
 'showCommitLabel':true,
 'mainBranchName': 'base'}} }%%
gitGraph TB:
commit id: "73bfd7d" tag: "v0.3.0"
branch main
branch ray/mnesia-attach
commit id: "97bef7"
checkout main
merge ray/mnesia-attach id: "13b3e4a"

checkout base
branch proper-topic
commit id: "8087564: add a new feature"

checkout main
branch topic-x
commit id: "bc4b2a1: new cool feature"

checkout main
merge proper-topic id: "2dd991a"

checkout main
branch topic-y
commit id: "546a8f9: add feature: conflicts X!"

checkout main
merge topic-x id: "90d91e7"
merge topic-y id: "0438922"
In a textual form this looks like:
0438922 * main Merge branch 'topic-y'
 |\
546a8f9 | * topic-y Added a feature that conflcits with X!
90d91e7 * | Merge branch 'topic-x'
 |\ \
 | |/
 |/|
bc4b2a1 | * topic-x Added a cool feature
2dd991a * | Merge branch 'proper-topic'
 |\ \
 | |/
 |/|
8087564 | * proper-topic Add a new feature
13b3e4a * | Merge branch 'ray/mnesia-attach'
 |\ \
 | |/
 |/|
97b6ef7 | * ray/mnesia-attach mnesia:
 |/
73bfd7d * v0.3.0 base

When topic-x and topic-y have a conflict, the shared base of their base is
4 taichi@Gensokyo:~/Documents/Work/Repo/anoma-all git:main: % git merge-base topic-x topic-y
13b3e4a215ea6222a1b1092ad242d3fa31e7040b

which is 13b3e4a * | Merge branch 'ray/mnesia-attach' and not
73bfd7d * v0.3.0 anoma/base, meaning that when a conflict is shown
in the merge 0438922, then the diff from a 3 way diff will show the
mnesia changes, potentially making it unclear to others way the
potentially issues may be.

 Other topics can not reuse your code

It is a bad idea to base code on main, as main contains random
merged topics before a release. This makes it so other topics who wish
to use yours also has to merge all the random topics on main.
This is easy to see with the following example:
%%{init:
{ 'logLevel': 'debug',
 'theme': 'forest',
 'gitGraph': {'showBranches': true,
 'showCommitLabel':true,
 'mainBranchName': 'simple-config'}} }%%
gitGraph TB:
commit id: "73bfd7d: base" tag: "v0.3.0"
branch major-changes
commit id: "97bef7: structural changes"
checkout simple-config
merge major-changes id: "5b16844: merge into main"
commit id: "f098de0: general config"
Here we have a topic major-changes that makes all sorts of changes,
and since we based our code off main, these are all included in
simple-config-change.
However imagine we wish to overhaul the configuration a bit
%%{init:
{ 'logLevel': 'debug',
 'theme': 'forest',
 'gitGraph': {'showBranches': true,
 'showCommitLabel':true,
 'mainBranchName': 'configuration-upgrade'}} }%%
gitGraph TB:
commit id: "73bfd7d: base" tag: "v0.3.0"
commit id: "f098de0: Basic config changes"
Now if we wish to merge in simple-config-change we have
%%{init:
{ 'logLevel': 'debug',
 'theme': 'forest',
 'gitGraph': {'showBranches': true,
 'showCommitLabel':true,
 'mainBranchName': 'configuration-upgrade'}} }%%
gitGraph TB:
commit id: "73bfd7d: base" tag: "v0.3.0"

branch simple-config
checkout configuration-upgrade
branch major-changes
commit id: "97bef7: structural changes"

checkout configuration-upgrade
commit id: "f098de0: Basic config changes"

checkout simple-config
merge major-changes id: "5b16844: merge into main"
commit id: "f098de0: general config"

checkout configuration-upgrade
merge simple-config id: "f6230df"
Besides having a spurious main merged into our topic now, we are
forced to deal with major-changes causing various conflicts with
your topic, making this merge untenable.
Meaning that this code has to be recreated in configuration-upgrade
instead of reusing simple-config-change, fixing the problem in 2
places, and having a conflict when it comes time for a release.

 Useless temporal history is had

As we can see in the previous examples, when we base off of main, we
end up in a scenario, where the date in which someone is branching is
baked into the code. As maintainers we don't care about when the code
was made, just the fact that it was. Thus this is a bit of history
that simply adds noise

 Merge other people's topics into yours

If you need some work that is already merged into next or main,
simply merge that topic into yours! Since the bases are well situated,
you will only deal with reasonable conflicts that you should have
context for.

 Base bug fixes on the commit that introduced the bug

Basing a bug fix on when the bug is introduced is superior than basing
it on the latest release, as this means that it can be merged into any
maint branches we may have.
For example:
73bfd7d * v0.3.0 Anoma 0.3.0
...
10f8636 * v0.2.0 Anoma 0.2.0
...
34fcd78 * v0.1.0 Release v0.1.0
if a bug was found in a topic between v0.1.0 and v0.2.0, and we
based it on when the bug was found we can merge it on v0.2.0 and
have v0.2.1 release from there. And have a v0.3.1 release as well.
2373834 * v0.2.1 Merge branch 'bug-fix' into HEAD
 |\
da24431 | * bug-fix fix bug
10f8636 * | v0.2.0 Anoma 0.2.0
19c6f03 * v0.3.1 Merge branch 'bug-fix' into HEAD
 |\
da24431 | * bug-fix fix bug
73bfd7d * | v0.3.0 Anoma 0.3.0
notice how we can merge this in with no conflicts!

IEx

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 Running multiple IEX's in the same Image/Environments

It is sometimes useful to have multiple terminals/IEX's in the same
running system, or perhaps to connect to a running deploy Anoma
Instance. We can connect to other IEX instances in this way:
MIX_ENV=test iex --sname b@localhost --cookie anoma -S mix
open a new terminal
MIX_ENV=test iex --remsh b@localhost --sname c@localhost --cookie anoma -S mix

This also allows you to connect from livebook
by using the above cookie anoma under the runtime config of
livebook.

Mnesia Vs Actor State

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 Where should state be stored

One interesting thing about our system is that in the user data section of our documentation we talk about how Anoma's state is stored in RocksDB tables on disc. And that we have some kind of dump format that goes along with the tables.
The dump format stores 2 kinds of information:
	Actor State
	Mnesia State

As discussed in the user data documentation, loading a dump file overwrites the DB. However what we did not cover is what the differences are between Mnesia storage and Actor storage.

 Mnesia Storage

The philosophy for what is stored in Mnesia should be: "Is this something the user should be able to query and write code over". Since Anoma is a distributed operating system project, many of the answers should be yes. The user should be able to make full fledged progrmas on Anoma and extend the system.

 Actor Storage

Actor storage on the other hand are for things we don't wish the user to be able to query. Thus implementaiton details about the execution should be omitted from user visible storage, and would be better served stored on the Actor.
A good example of this is the old ordering logic.
 typedstruct do
 field(:table, Router.Addr.t())
 field(:next_order, non_neg_integer(), default: 1)
 field(:hash_to_order, %{key() => non_neg_integer()}, default: %{})
 field(:logger, Router.Addr.t(), enforce: false)
 end
In this example, we store things like specific order information, the live router addresses for storage and for the logger. None of this is relevant to the users and are just coincidental with how we wrote the system.

Observer

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 How To use Observer

It is sometimes useful to have multiple terminals/IEX's in the same
running system, or perhaps to connect to a running deploy Anoma
Instance. We can connect to other IEX instances in this way:

 Viewing Anoma

One can view Anoma by going to the Applications view of the Observer pane and clicking on anoma
[image:]
This view is quite nice because if we spawn a process, we can see it attach
alias Anoma.Storage
alias Anoma.Node.Storage.Communicator, as: Scom
alias Anoma.Node.Executor.Communicator, as: Ccom
alias Anoma.Node.Mempool.Communicator, as: Mcom
import TestHelper.Nock

storage = %Anoma.Storage{
 qualified: Anoma.Qualified,
 order: Anoma.Order
}

name = :anoma
snapshot_path = [:my_special_nock_snaphsot | 0]
node = Anoma.Node.com_names(name)
key = 555
zero = zero_counter(key)
pid_zero = Mcom.tx(node.mempool, zero).pid
#PID<0.4479.0>
Then we can see this same process as a child to one of the pools
[image:]

 Looking at Mnesia Tables

One can go to the Table view, and click view to turn it from ets tables to mnesia tables.
Now you should be able to see this:
[image:]
If we click on a table like the one highlighted we can see the values in the table
[image:]
Click on the data inside of here gives us an inspector pane of the data
[image:]

Style Guide

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 Structural Rules

A module is documented if
	It has nonempty module documentation.
	All of its public functions capable of having documentation have nonempty documentation.
	All of its public functions capable of having types assigned have assigned types.
	All types have type documentation.

Rule 1.1
Any module which is specified under the Node directory ought to be documented.
Rule 1.2
Any public function which is used in a public function by a module specified under the Node directory ought to have nonempty documentation.
Rule 1.3
Documentation should be given in first person.
Rule 1.4
If foo uses bar in the same module in the Node dir then foo is placed higher than bar in the module.
Exceptions might exist but should be noted explicitly in PR and commit messages.
Rule 1.5 (CQRS)
If foo uses Router or GenServer functionality, it should be a call if and only if either
	The underlying state is unchanged by calling foo
	There are synchronizaton requirements that foo has to fullfill.

Rule 1.6
If foo uses call functionality then the corresponding handle_call shall have body
{:reply, do_foo(...), state}
with do_foo implementing core logic.
If foo has synchronization requirements, the return of do_foo should only contain information regarding the
success or failure of the operation.
Rule 1.7
Calling a callback function from another callback functions is not allowed.
Rule 1.8
Every actor module should have mandatory Public RPC API, GenServer Behavior, and GenServer Implementation sections with following formatting:
 ##
 # Public RPC API #
 ##
 ##
 # GenServer Behavior #
 ##
 ##
 # GenServer Implementation #
 ##
where
	Public RPC API contains public functions using call or cast functionality
	GenServer Behavior contains all callback functions handle_call, handle_cast, handle_info, and handle_continue
	GenServer Implementation contains all functions explicitly used in the GenServer Behavior sections.

Extra functions can be contained in the latter section or can further be separated into Helper functions.
Rule 1.9
Actor module may have an optional Logging Info section with following formatting:
 ##
 # Logging Info #
 ##
that contains functions related to logging.

 Module Documentation

Rule 2.1
Module documentation starts with stating its core purpose in one sentence followed by a new line. If it is related to an Engine X mentioned in the specs, specify that it is an implementation.
	I am the Storage Engine implementing the Local Key Value Storage Engine.
	I am the Dumper Engine. (in case the names match)
	I am the Blah module which implements foo functionality.

Rule 2.2
Module documentation ought to have an API section separated by a ### Public API line followed by a line: I have the following public functionality: followed by a list of functions or subsections of lists of functions. All public module functions should appear in this section.
A subsection named Section Name should be formatted as #### Section Name followed by a short description of the section and a list of functions.
The format for the list is: if a module has public function foo of n entries we list it as - `foo/n`. Every line - except those in the function list - should be separated by a newline. Functions should be grouped by argument number with fewer argument numbers on top.
If subsections were used yet not all functions feature in their lists, the rest of the functions should appear in the #### Other subsection placed at the end.
	### Public API
I have the following public functionality:

Transaction Functions

- `new_transaction/3`
- `fire_new_transaction/3`
- `new_transaction/4`
- `fire_new_transaction/4`

Other

- `snapshot/1`
- `subscribe/2`

 Example

 defmodule Anoma.Node.Clock do
 @moduledoc """
 I am the Clock module implementing the Local Wall Clock Engine.

 I provide info on the time elapsed in milliseconds after the node launched
 and the epoch from which it has been calculated using monotonic time.

 The current implementation launches the epoch by asking for the system
 monotonic time at the point of an Anoma node launch. This is recommended
 as all my public API uses system monotonic time to give measurements.

 ### Public API

 I have the following public functionality:

 - `get_time/1`
 - `get_epoch/1`
 """

 Type Documentation

Rule 3.1
The type documentation should start with stating the purpose of the type in one sentence.
	I control options for `launch_min/2`
	I am the type of the Executor Engine

Rule 3.2
Every product type documentation should have a ### Fields section followed by a list of field atoms with their descriptions.
The list should be formatted as follows:
Given a field :field we list it as - `:field` - followed by a short description. This is followed by a sentence Enforced: bool where bool is either true or false. If it has a default value, should be also followed by Default: value.
	### Fields

- `:intents_topic` - The address of the intents topic to which the engine broadcasts.
- `:intents` - The set of intents to be solved. Default: `MapSet.new/0`
- `:logger` - The address of the Logger Engine used for logging. Enforced: false.

Rule 3.3
Every sum type documentation should have an ### Options section followed by a list of field atoms with their descriptions.
The list should be formatted as follows:
Given an option :option we list it as - `:option` - followed by a short description.
	### Options

- `:use_rocksdb` - See `t:Anoma.Node.configuration/0` for more
information.
- `:supervisor` - This flag determine if we use a supervisor and if
so what options. See `t:Supervisor.option/0 ` for supervisor options.
- `:testing` - This flag notes if we are testing the node. This gets
 fed directly into the type `t:Anoma.Node.configuration/0` for
 `Anoma.Node.start_link/1`. Please consult the
 `t:Anoma.Node.configuration/0` documentation for the full effect
 this has on the node.

 Example

 typedstruct do
 @typedoc """
 I am the type of the Pinger Engine.

 I store minimal info required to ask the mempool to execute, namely the
 mempool address and the time specified by the user.

 - `:mempool` - The Mempool Engine address which is called to execute.
 - `:time` - The time that should be elapsed between the calls to
 execute or an atom saying that no timer should be set.
 Default: `:no_timer`
 """

 field(:mempool, Router.Addr.t())
 field(:time, non_neg_integer() | atom(), default: :no_timer)
 end

 @typedoc """
 I control options for `launch_min/2`.

 ### Options

 - `:use_rocksdb` - See `t:Anoma.Node.configuration/0` for more
 information.
 - `:supervisor` - This flag determine if we use a supervisor and if
 so what options. See `t:Supervisor.option/0 ` for supervisor options.
 - `:testing` - This flag notes if we are testing the node. This gets
 fed directly into the type `t:Anoma.Node.configuration/0` for
 `Anoma.Node.start_link/1`. Please consult the
 `t:Anoma.Node.configuration/0` documentation for the full effect
 this has on the node.
 """
 @type launch_option ::
 {:use_rocksdb, boolean()}
 | {:supervisor, [Supervisor.option()]}
 | {:testing, boolean()}

 Function Documentation

Rule 4.1
The function documentation should begin with stating its purpose in one sentence. If the function is an implementation of a specs-related function, it should mention this by name.
	I am delete_key function, implementing DeleteValueKVStorage functionality.
	Given a server S and time T, I change the timer set for the struct connected to S setting it to T.

Rule 4.2
If a documented function has functions of same arity in the same module which pattern match arguments differently, they should be listed in a ### Pattern-Match Variations section in the following format:
If function foo has a variation foo(x1, ... , xn) where x1,...,xn are some Elixir object capable of being pattern-matched to, we present it in a list as - foo(x1, ... ,xn) - followed by a short description.
If the arguments are not pattern-matched, provide the variable names as in the definition.
	### Pattern-Matching Variations

- `init(%Clock{})` - I initialize the Engine with the given state.

- `init(args)` - I expect a keylist and check for the :start key then
 launch the Clock with said setting.

Rule 4.3
Any function application which a non-constant output and an appropriate EModule example, it should have a reference to the appropriate example function in the codebase.

 Example

 @doc """
 I am the initialization function of the Clock Engine.

 ### Pattern-Matching Variations

 - `init(%Clock{})` - I initialize the Engine with the given state.

 - `init(args)` - I expect a keylist and check for the :start key then
 launch the Clock with said setting.
 """
 def init(%Clock{} = state) do
 {:ok, state}
 end

 @spec init(list({:start, integer()})) :: {:ok, Clock.t()}
 def init(args) do
 {:ok, %Clock{start: args[:start]}}
 end

Testing

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 Testing

Testing is important for the Anoma Project.
These series of documents cover how best to traverse tests throughout the project.

Running Tests

 Index

	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests

	Visualization	Actors

	Hoon	Calling
	Dumping
	Setting Up

	Analysis

 Intent

This document is aimed at allowing any developer to run tests in a more ergonomic way than simply running:
% mix test

Namely, this document covers running tests inside IEX and being able to do so on demand.

 Setting up IEX

To Run tests within IEx. One simply calls Mix.Tasks.Test.run/1 within their IEX session.
However attempting to do this by default will result in the following error:
 iex --sname mariari --cookie mariari -S mix

Mix.Tasks.Test.run([])
** (Mix.Error) "mix test" is running in the "dev" environment. If you are running tests from within another command, you can either:

 1. set MIX_ENV explicitly:

 MIX_ENV=test mix test.another

 2. set the :preferred_envs for "def cli" in your mix.exs:

 def cli do
 [preferred_envs: ["test.another": :test]]
 end

 (mix 1.15.5) lib/mix.ex:577: Mix.raise/2
 (mix 1.15.5) lib/mix/tasks/test.ex:486: Mix.Tasks.Test.do_run/3
 #cell:nsl6gqly4w45ei6b:1: (file)
    ```
The error text hints at a suggestion on how to solve the problem.
MIX_ENV=iex iex --sname mariari --cookie mariari -S mix

I recommend using the iex environment over the test environment that is shwon in the error, as in the Anoma project, we set the test environment to have Config.config/2 to have the following settings:
config :logger,
  level: :error
Which means that some logging details you may care about may not be reported to you by default.
Now that we have the environment setup if we try running this again we get:
Mix.Tasks.Test.run([])

Finished in 0.00 seconds (0.00s async, 0.00s sync)
0 failures

Randomized with seed 670138
:ok
Running the command has a few effects:
	It behaves the same as mix test running every single test in the project.
	It loads in the test modules, meaning we now have access to all modules in AnomaTest.
	ExUnit is now started up, meaning we can run tests with ExUnit.run/0 now.

For larger projects 1. may be prohibitive as tests may take quite a while to run!

  
    
  
  Running Individual Modules For the First Time


To run an individual module, one simply needs to invoke the ExUnit framework themselves.
A good example of this at play is the following example:
iex(mariari@YU-NO)1> ExUnit.start
:ok
iex(mariari@YU-NO)2> c "test/node/mempool_test.exs"
[AnomaTest.Node.Mempool]
iex(mariari@YU-NO)3> ExUnit.run

14:46:45.846 [error] Worker failed! :error

14:46:45.849 [error] Worker failed! :error
.....
Finished in 0.3 seconds (0.3s async, 0.00s sync)
5 tests, 0 failures

Randomized with seed 670138
%{total: 5, failures: 0, excluded: 0, skipped: 0}
We can see here that I've started up ExUnit with ExUnit.start/0, then I've manually compiled the module I wanted to run c ... and then I ran ExUnit.run/0.
The side effect of running tests this way is that only AnomaTest.Node.Mempool is in scope. The other tests are not.
The behavior of ExUnit.run/0 is quite configurable, see ExUnit.configure/1 for a lot of options on filtering what tests are run.

  
    
  
  ReRunning Tests


One may be surprised at the first time they try to rerun tests, as they will run into the following anomaly:
Mix.Tasks.Test.run([])

Finished in 0.00 seconds (0.00s async, 0.00s sync)
0 failures

Randomized with seed 670138
:ok
No tests were run again! This can be rather annoying as we often make changes to code and wish to see if they break certain tests!
A way around this is by recompiling the given module then running again
iex 7> r AnomaTest.Node.Mempool
warning: redefining module AnomaTest.Node.Mempool (current version defined in memory)
  test/node/mempool_test.exs:1: AnomaTest.Node.Mempool (module)

{:reloaded, [AnomaTest.Node.Mempool]}
iex(mariari@YU-NO)8> Mix.Tasks.Test.run([])

14:58:09.255 [error] Worker failed! :error

14:58:09.256 [error] Worker failed! :error
.....
Finished in 0.3 seconds (0.3s async, 0.00s sync)
5 tests, 0 failures

  
    
  
  Running individual tests


Since most (if not all!) tests are composed from examples. One can simply run the examples directly!
If we take AnomaTest.LiveBook.Example as our exmaple, then we can run the individual tests like the following.
Test names are odd in that they are not simple atoms, they are typically the word test then the string name given to the test. Hence test "first" became AnomaTest.LiveBook.Example."test first"/1.
To run the group, we need to prepend the group name as well.

  
    
  
  Conclusion


Running tests in Elixir is nice and somewhat simple!
We have covered how to:
	Run tests within IEX
	re-running tests in IEX
	running individual tests fully
	Running individual tests partially



  

    
Writing Tests
    


  
    
  
  Index


	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests




	Visualization	Actors


	Hoon	Calling
	Dumping
	Setting Up


	Analysis


  
    
  
  Conventions


Since the figuring out page demonstrates that well laid out test files are the key to understanding how modules work, it is important to write tests so this can always be achieved.
The following sections will lay out how we can achieve this.

  
    
  
  Make sure names from the test matches setup_all


ExUnit.start()
:ok
defmodule AnomaTest.LiveBook.Nam do
  use ExUnit.Case

  setup_all do
    special = 3
    [special: special]
  end

  test "this is acceptable", %{special: special} do
    assert special == 3
  end

  test "this test is not acceptable", %{special: spec} do
    assert spec == 3
  end
end
{:module, AnomaTest.LiveBook.Nam, <<70, 79, 82, 49, 0, 0, 14, ...>>,
 {:"test this test is not acceptable", 1}}
If this convention is not followed, then the user can not simply be
copy and paste the lines to figure out how to use the module.

  
    
  
  Write setup_all to not crash on reevaluation


defmodule AnomaTest.LiveBook.NoCrash do
  use ExUnit.Case

  setup_all do
    name = :intent_example

    unless Process.whereis(name) do
      Anoma.Node.Intent.init(name)
    end

    [intent_pool: name]
  end
end
warning: Anoma.Node.Intent.init/1 is undefined (module Anoma.Node.Intent is not available or is yet to be defined)
  documentation/contributing/testing.livemd#cell:qbrtwwd53rvqgtpz:8: AnomaTest.LiveBook.NoCrash.__ex_unit_setup_all_0/1
{:module, AnomaTest.LiveBook.NoCrash, <<70, 79, 82, 49, 0, 0, 11, ...>>,
 {:__ex_unit_setup_all_0, 1}}
	Here we check if the process is running. This way if it is
already in IEX we simply don't disturb it but rename it to point
to the correct one we wish to operate over.
	If we did not do this check the other commands may fail and IEX
may not be trapped to continue.
	mix test will not catch this


  
    
  
  Try to make tests idempotent


Let us demonstrate this point, by making a simple queue service.
defmodule Queue do
  use GenServer

  def init(_init) do
    {:ok, :queue.new()}
  end

  def start_link(arg) do
    GenServer.start_link(__MODULE__, arg, name: arg)
  end

  def reset(queue) do
    GenServer.cast(queue, :reset)
  end

  def enqueue(queue, name) do
    GenServer.cast(queue, {:enqueue, name})
  end

  def pop(queue) do
    GenServer.call(queue, :pop)
  end

  def handle_cast(:reset, _pool) do
    {:noreply, :queue.new()}
  end

  def handle_cast({:enqueue, val}, pool) do
    {:noreply, :queue.cons(val, pool)}
  end

  def handle_call(:pop, _from, queue) do
    {:reply, :queue.get_r(queue), :queue.drop_r(queue)}
  end
end
{:module, Queue, <<70, 79, 82, 49, 0, 0, 18, ...>>, {:handle_call, 3}}
defmodule AnomaTest.LiveBook.Idempotent do
  use ExUnit.Case

  setup_all do
    name = :queue_name

    unless Process.whereis(name) do
      Queue.start_link(name)
    end

    [queue: name]
  end

  test "reset", %{queue: name} do
    # Make sure we get reliable results!
    Queue.reset(name)
    Queue.enqueue(name, 5)
    Queue.enqueue(name, 4)
    assert 5 == Queue.pop(name)
  end
end
{:module, AnomaTest.LiveBook.Idempotent, <<70, 79, 82, 49, 0, 0, 15, ...>>, {:"test reset", 1}}
Here before getting values from the queue, we make sure it's fresh by resetting it.
In the Queue case it's contrived, however a lot of genservers in the codebase work like this!
Something important to note is that mix test will not catch this!
So please try to keep tests isolated from each other.

  
    
  
  Try to Name Values


For debugging purposes, it is best to name values, and so you can rerun values on command, or help the debugging process.


  

    
Understanding any code in Anoma
    


  
    
  
  Index


	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests




	Visualization	Actors


	Hoon	Calling
	Dumping
	Setting Up


	Analysis


  
    
  
  Figuring out what a module does


Α good start is by calling h on the module from within one's IEX
instance.
require IEx.Helpers
import IEx.Helpers
# the above two lines are not requried for the REPL!
h(Anoma.Node.Transaction.Backends)

                        Anoma.Node.Transaction.Backends

Backend module. Support :kv, :ro, :rm, :cairo execution.

However, this typically doesn't show off how one uses said
module. Thankfully, the codebase is setup in such a way that one can
always interactively play with any given module.
This is done by simply checking out the examples folder, and finding the
module you wish to learn to learn about.
For example, let us learn about the nock. In the codebase currently
this can be found here:
	anoma/apps/anoma_lib/lib/examples/enock.ex,

note that even if this gets out of date, you should be able to do this with any file!
From here every example shows off how the API works, code can be ran line by line, by simply running all the aliases and importing the module itself.
# output redacted for length
import Examples.ENock

require ExUnit.Assertions
import ExUnit.Assertions

alias Examples.ECrypto
Examples.ECrypto
Once this is had, we can simply run any example trivially!
one_two()
[<<1>> | <<2>>]
Further since the data is live, we can use tools like :observer to
view the processes, and see general state dumping commands.


  

    
Writing Documents
    


  
    
  
  Index


	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests




	Visualization	Actors


	Hoon	Calling
	Dumping
	Setting Up


	Analysis


  
    
  
  The writing from within Anoma


One of the more important parts of the Anoma project is understanding how the codebase works, and how it evolves.
A good way to start on this process is by reading and writing documentation and making visual tools to better solidify knowledge for oneself and others.
To better do this, the codebase as a few levels of documentations:
	The specs (link TBA)
	These livebook documents
	Module level documentation

1. is what specifies what Anoma is abstractly.
2. serves the purpose of general knowledge transfer. Some documents serve to provide newcomers with information about various parts of Anoma's development process, others provide visual presentations to various parts of the codebase, while even others provide indepth analys of the codebase.
3. is documents regarding module and function specifics. This is often augmented by 2. for better context and examples.

  
    
  
  Making a new document


To create a new document, it is simple as creating a new .livemd file in the folder location you wish it to be organized under.
Thus a file at documentation/contributing/testing/foo.livemd would be organized under the section contribution/testing/.
The file can either be made in livebook itself, or via the host operating system.

  
    
  
  Connect to Anoma


One should connect the document to a locally running IEX instance of Anoma.
This let's you take advantage of the pre-installed kino tools, and lets you generate documentation/diagrams over real Anoma Code.
This can be achieved by click on runtime settings:

  
    
    Visualizing Anoma - Anoma v0.25.0
    
    

    


  
  

    
Visualizing Anoma
    


  
    
  
  Index


	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests




	Visualization	Actors


	Hoon	Calling
	Dumping
	Setting Up


	Analysis


  
    
  
  Note on this section


This section provides extra visual diagrams on various components of
Anoma, and serves to give an intuitive understanding on how Anoma
works.


  

  
    
    The Actors - Anoma v0.25.0
    
    

    


  
  

    
The Actors
    


  
    
  
  Index


	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests




	Visualization	Actors


	Hoon	Calling
	Dumping
	Setting Up


	Analysis


  
    
  
  An overview of Anoma


A good overview of Actors can be seen by looking at the supervision tree of Anoma itself.
Kino.Process.render_app_tree(:anoma_node, direction: :left_right)
graph LR;
application_master(#PID<0.875.0>):::supervisor ---> supervisor_ancestor;
supervisor_ancestor(#PID<0.876.0>):::supervisor ---> 0;
0(Anoma.Node.Supervisor):::root ---> 1(Anoma.Node.Transport.Supervisor):::supervisor
0(Anoma.Node.Supervisor):::root ---> 6(Anoma.Node.Transaction.Supervisor):::supervisor
1(Anoma.Node.Transport.Supervisor):::supervisor ---> 2(ProxySupervisor):::supervisor
1(Anoma.Node.Transport.Supervisor):::supervisor ---> 3(Anoma.Node.Transport.TCPSupervisor):::supervisor
1(Anoma.Node.Transport.Supervisor):::supervisor ---> 4(ProxyRegister):::supervisor
4(ProxyRegister):::supervisor ---> 5(ProxyRegister.PIDPartition0):::worker
classDef root fill:#c4b5fd, stroke:#374151, stroke-width:4px;
classDef supervisor fill:#c4b5fd, stroke:#374151, stroke-width:1px;
classDef worker fill:#93c5fd, stroke:#374151, stroke-width:1px;
classDef notstarted color:#777, fill:#d9d9d9, stroke:#777, stroke-width:1px;



  
    
  
  Mempool


A good view of visualizing Anoma can be seen through running the
mempool, as it orchastrates the other actors in Anoma to act
First we will create a transaction and see how that changes the base supervision tree before executing
alias Anoma.Node.Ordering
alias Anoma.Node.Mempool
alias Anoma.Node.Router
import TestHelper.Nock

name = :anoma
node = Anoma.Node.state(name)
key = 555
zero = zero_counter(key)
pid_zero = Mempool.tx(node.mempool, {:kv, zero}).pid
#PID<0.438.0>
The previous evaluations PID can be seen in the diagram below!
{_, [pid1, pid2]} = Process.info(Process.whereis(:anoma), :links)
Kino.Process.render_sup_tree(pid2, direction: :left_right)
graph LR;
0(supervisor hWXJ+NujE76g6g4X5Bu+KH1YtSKrur7yDUfeu0JguKY=):::root ---> 1(Anoma.Node.Router hWXJ+NujE76g6g4X5Bu+KH1YtSKrur7yDUfeu0JguKY=):::worker
0(supervisor hWXJ+NujE76g6g4X5Bu+KH1YtSKrur7yDUfeu0JguKY=):::root ---> 2(Anoma.Node.Clock plaqCqOIQ4LLCT9MAmEMV+qkqZq4+qZV2KSpqSxRZu0=):::worker
0(supervisor hWXJ+NujE76g6g4X5Bu+KH1YtSKrur7yDUfeu0JguKY=):::root ---> 3(Anoma.Node.Logger BDTPKlJ5ubxM9NMrbgMzxE5jfKKn+qwnxISeroCw3xc=):::worker
0(supervisor hWXJ+NujE76g6g4X5Bu+KH1YtSKrur7yDUfeu0JguKY=):::root ---> 4(Anoma.Node.Ordering rVQnNBPLju9VBsHOQzAdKaEXRK2u03vF8huvKzVPyT8=):::worker
0(supervisor hWXJ+NujE76g6g4X5Bu+KH1YtSKrur7yDUfeu0JguKY=):::root ---> 5(Anoma.Node.Executor po4ivXyVtjQ9jvTtra0D2DbKIpM8YOClCmfk8JLp31k=):::worker
0(supervisor hWXJ+NujE76g6g4X5Bu+KH1YtSKrur7yDUfeu0JguKY=):::root ---> 6(Anoma.Node.Mempool yg3U9BqClfT+jJkwbtuYm2WCmIgR+f6ELjodD5P4eko=):::worker
0(supervisor hWXJ+NujE76g6g4X5Bu+KH1YtSKrur7yDUfeu0JguKY=):::root ---> 7(Anoma.Node.Pinger Oc96nqV6/0FFT/JULG5Ep+Z1c62/8f1Bi0gY9CVmJhs=):::worker
classDef root fill:#c4b5fd, stroke:#374151, stroke-width:4px;
classDef supervisor fill:#c4b5fd, stroke:#374151, stroke-width:1px;
classDef worker fill:#93c5fd, stroke:#374151, stroke-width:1px;
classDef notstarted color:#777, fill:#d9d9d9, stroke:#777, stroke-width:1px;


Now let us see what happens between the actors when we run the mempool
Kino.Process.render_seq_trace(
  [Process.whereis(node.mempool.server)],
  fn ->
    Mempool.execute(node.mempool)
  end,
  message_label: &Anoma.Utility.message_label/1
)
sequenceDiagram
participant 3 AS code_server;
participant 7 AS mnesia_locker;
participant 6 AS mnesia_tm;
participant 8 AS Anoma.Node.Router hWXJ+NujE76g6g4X5Bu+KH1YtSKrur7yDUfeu0JguKY=;
participant 2 AS Anoma.Node.Logger BDTPKlJ5ubxM9NMrbgMzxE5jfKKn+qwnxISeroCw3xc=;
participant 4 AS Anoma.Node.Ordering rVQnNBPLju9VBsHOQzAdKaEXRK2u03vF8huvKzVPyT8=;
participant 1 AS Anoma.Node.Mempool yg3U9BqClfT+jJkwbtuYm2WCmIgR+f6ELjodD5P4eko=;
participant 0 AS self();
participant 5 AS #35;PID<0.438.0>;
0->>1: CALL: execute
1->>2: ADD LEVEL: info
1->>3: INFO: code_call
3->>1: INFO: code_server
1->>3: INFO: code_call
3->>1: INFO: code_server
1->>3: INFO: code_call
3->>1: INFO: code_server
1->>3: INFO: code_call
3->>1: INFO: code_server
1->>4: CALL: next_order
4->>1: INFO: tuple
1->>3: INFO: code_call
3->>1: INFO: code_server
1->>3: INFO: code_call
3->>1: INFO: code_server
1->>2: ADD LEVEL: info
1->>4: CALL: new_order
4->>1: INFO: tuple
1->>2: ADD LEVEL: info
1->>5: INFO: write_ready
1->>2: ADD LEVEL: info
1->>6: INFO: tuple
6->>1: INFO: mnesia_tm
1->>7: INFO: tuple
7->>1: INFO: mnesia_locker
1->>7: INFO: release_tid
1->>6: INFO: delete_transaction
1->>2: ADD LEVEL: info
1->>2: ADD LEVEL: info
1->>8: CAST: cast
1->>0: INFO: tuple

{:ok, 1}
As we can see, we get a fairly solid overview of what actors sent what messages
We can also see what processes startup when we start an execution
Kino.Process.render_seq_trace(
  [Process.whereis(node.mempool.server)],
  fn -> Mempool.tx(node.mempool, {:kv, increment_counter_val(555)}).pid() end,
  message_label: &Anoma.Utility.message_label/1
)
#PID<0.1147.0>
Kino.Process.render_seq_trace(
  :all,
  fn -> Anoma.Node.Logger.add(node.logger, :info, "help") end,
  message_label: &Anoma.Utility.message_label/1
)
:ok


  

  
    
    Hoon - Anoma v0.25.0
    
    

    


  
  

    
Hoon
    


  
    
  
  Index


	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests




	Visualization	Actors


	Hoon	Calling
	Dumping
	Setting Up


	Analysis


  
    
  
  About This Guide


This guide hopefully serves you to be able to reason about the nock
code in Anoma. It is written for a non Hoon audience, so if you are
familiar with Hoon, you may find use in the Nock code as there is a
big emphesis on nock itself, rather than just Hoon. If you are not
familiar with Hoon, this merely shows you how to use the
Urbit environment to aid Nock code.
A good general guide to Hoon can be found At the Hoon School.
Hopefully the documention here serves as a good companion piece for
anyone interested in Nock, Hoon, or Anoma.


  

  
    
    Calling - Anoma v0.25.0
    
    

    


  
  

    
Calling
    


  
    
  
  Index


	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests




	Visualization	Actors


	Hoon	Calling
	Dumping
	Setting Up


	Analysis


  
    
  
  Calling Conventions


For this section, it is assumed that one is comfortable with the techniques outlined in the dumping guide, in particular familiarity with:
	dottar(.*)
	zaptis(!=)

is had, if one is uncomfortable with what is shown here, it would be a good idea to skim back over the dumping guide for more information.
With that disclaimer out of the way, let us talk about calling conventions.

  
    
  
  Basic Nock Calls


There are a few ways to call Nock functions, recall that the structure of a functions look like this:
[function sample environment-defined-in]
	Function is some nock logic we wish to run
	Sample is the default argument of the function if non is given
	Environment-defined-in is the environment the function is defined in and relies upon.

A good basic example can be seen below:
[[0 6] 777 999]
This function has an arbitrary environment of 999 and a sample of 777. The logic itself simply grabs the sample from the environment.
A good visualization of the indexing can be seen below
stateDiagram-v2
1 --> 2
1 --> 3
2 --> 4
2 --> 5
3 --> 6
3 --> 7
where we have in our concrete example
	Index	Nock
	1	[[0 6] 777 999]
	2	[0 6]
	3	[777 999]
	4	0
	5	6
	6	777
	7	999

Thus if we wish to call our code example, the most basic way is by invoking nock 9. Continuing our example from above, let us see the most basic call of it.
> .*  [[0 6] 777 999]  [9 2 0 1]
777
To better understand what the 9 is doing let us ask us the nock structure of it
> ;;  nock  [9 2 0 1]
[%9 p=2 q=[%0 p=1]]
Here we can see the 9 takes 2 arguments, a p=2 and a q=[0 1] argument.
The q=[0 1] argument goes off first. The point of this is to determine what module/layer (called an core in hoon) the particular function (called a gate in hoon) belongs to.
From here the p=2 is the location of the function/gate.
In our example we know the function is indexed at 2, so thus we simply call the logic with the environment it's defined inside, meaning we simply get out the 6th index which we have observed above is 777
[9 2 0 1] isn't too interesting on it's own, all we have managed to do, is make fancy default values.
However, since the logic we are running indexs into the sample, all we have to do is fine a formula that replaces the sample with the desired value
> .*  [[0 6] 777 999]  [9 2 10 [6 1 888] 0 1]
888
> ;;  nock  [9 2 10 [6 1 888] 0 1]
[%9 p=2 q=[%10 p=[p=6 q=[%1 p=888]] q=[%0 p=1]]]
Above we do exactly that, all it took was adding a simple 10 [6 1 888], however let us analyze what this does.
%10 is better known as replace at axis, the axis is the first value of [6 1 888] which in this case is position 6. We then run the formula [1 888] which is simply saying return the constant 888, then 10 finishes and replaced position 6 with the result, giving the logic located at 2 (I.E. [0 6]) the new sample to run against.
Since the %9's q=... has the replaced value, this ends up being the context for the p=2 to run inside, and thus we have a computation that is effectively:
> .*  [[0 6] 888 999] [9 2 0 1]
888
We will in the next section see how Hoon functions are defined, as they give further detail in how we use instruction 9.

  
    
  
  Hoon Gates: What are they really?


Something interesting is comparing the 9 described here to dumping the indicies found in the dumping guide.
Namely we saw:
> !=(dec:anoma)
[7 [0 46] 9 342 0 15]
What is incongruous, is that we described 9 as calling a function, but in the dumping section, we make it seem like it's effectively only doing indexing to bring the name ready to be called.
This all has to do with how hoon stores nock functions, they do something quite clever.
Instead of just storing the function as code itself, it stores it similarly to this
[[1 [[0 6] 777 999]] 666 909]
Where we store a nock function that evaluates to the code, the 1 instruction is simply that, when we evaluate this form we get
> .*  [[1 [[0 6] 777 999]] 666 909]  [9 2 0 1]
[[0 6] 777 999]
for which we can now call it
> .*  .*  [[1 [[0 6] 777 999]] 666 909]  [9 2 0 1]  [9 2 0 1]
777
In this case, it doesn't do much, but it makes sense if we look at a real example.
> .*  add:anoma  [0 2]
[ 6
  [5 [1 0] 0 12]
  [0 13]
  9
  2
  10
  [6 [8 [9 342 0 7] 9 2 10 [6 0 28] 0 2] 4 0 13]
  0
  1
]
On this example I want to focus on the dec call [8 [9 342 0 7] 9 2 10 ...]. We know this is dec, as we already know it's offset inside layer 1 is 342, but it's located at 7 as we've pushed add with its sample to the tree, making layer 1's index go to 7 (see the section on how indicies change) relative to add.
What is very interesting, is that since the gate evaluates to the nock function we wish, we can follow it up with the simple [9 2 10 [6 ...] 0 ...] pattern we found before.
Meaning that we have decoupled indexing with calling. If Hoon did not do this, then we are in an awkward position that the [9 342 0 7] somehow has to get 0 7 index before running the application change 0 28, complicating the formula. Making it a simple constant function allows the formulas to stay manageable.
Some other minor notes. The call: [9 2 10 [6 0 28] 0 2] ends with 0 2 instead of 0 1 because we have bushed with 8, more on this later.
We will continue to expand this in the next section, but first let us learn how to evaluate code in the context of Anoma as the standard environment.

  
    
  
  Evaluating Calls in The Anoma Context


For actually writing code for Anoma, the dump of dec that we saw:
> !=(dec:anoma)
[7 [0 46] 9 342 0 15]
would not actually run in the Anoma standard library. This is because it is assuming the current environment which has the Hoon standard library.
> .*  anoma  [7 [0 46] 9 342 0 15]
dojo: hoon expression failed
Rather than by hand editing the 7 [0 46] out, we can instead tell Hoon that the context of the computation is in Anoma, and this is done through tisgar(=>).
A good example can be seen here:
> =>  anoma  !=(dec)
[9 342 0 15]
Which gives us the correct computation to run dec on Anoma.
> =>  anoma  .*  .  [9 342 0 15]
[ [ 6
    [5 [1 0] 0 6]
...
:: dec core emitted

> =>  anoma  .*  .*  .  [9 342 0 15]  [9 2 10 [6 1 777] 0 1]
776

  
    
  
  What a Hoon function call actually does


So far this document has only outlined calling Hoon functions by hand, but what does the cannonical application form generate?
> =>  anoma  (dec 3)
2
Well we can ask zaptis(!=) what this expression means
> =>  anoma  !=((dec 3))
[8 [9 342 0 15] 9 2 10 [6 7 [0 3] 1 3] 0 2]
> ;;  nock  =>  anoma  !=((dec 3))
[ %8
  p=[%9 p=342 q=[%0 p=15]]
  q=[%9 p=2 q=[%10 p=[p=6 q=[%7 p=[%0 p=3] q=[%1 p=3]]] q=[%0 p=2]]]
]
Let us break down this expression
	[%8 p=[9 342 ...] q=[9 2 ...]]	8 simply does a push on subject, with the p getting consed onto the environment. We've seen this p before, it is simply the formula for dec.
	Thus after the p we have [dec anoma] filling the environment
	This is now the context for the q=


	[%9 p=2 q=[%10 ...]]	We've seen this [9 2 10 [6 ...] ...] call before, like before the function within the current layer is located at 2. However what is different is the specifics of the q


	[%10 p=[p=6 q=[%7 p=[%0 p=3] q=[%1 p=3]]] q=[0 2]]	This 10 is a replace at axis 6 like we have seen before, but let us note the q=[0 2].
	Most example's we've seen have been [0 1], this example has a [0 2] as the first %8 pushed the dec function onto the environment, meaning that the function we wish to replace 6 of is really at index 2!
	An important note is that this rule expands to a replace where the q and p are ran on the original environment.
	This means that q=[%7 ...] gets to run in the environment where the surrounding environment still exists


	[%7 p=[%0 p=3] q=[%1 p=3]]	Here are where things get interesting, %7 is simply composition, thus p is ran on the environment then q is.
	This is important because the p=[%0 p=3] simply restores the original environment> .*  999  [8 [1 1] 0 1]
[1 999]
> .*  999  [8 [1 1] 0 3]
999

	Meaning that computation q can be ran as if the %8 never happened.
	The Hoon compiler is sometimes smart and will optimize out the %7


	[%1 p=3]	We simply put 3 as the argument
	Dec now runs with 3 as we expect.



Thus as we can see, the calling convention of Hoon is not very complicated, and is mostly sensible about trying to preserve the environments things are called in.

  
    
  
  Paramarterized Modules: Or How Gates are just Cores


A common occurence in our standard library is the use of paramartized modules. However something interesting to note is that on the gate documentation, it mentions
A gate is core with one arm named $ (buc). They are often called Hoon functions because they have many of the same properties of functions from other programming languages.

Meaning that every time we have been calling add we've really been calling a module with a function named $ inside
> =>  anoma  $:add
0
Thus the calling conventions we've discussed above are exactly the same for modules!
Let us look at the lsh function for confirmation
> =>  anoma  !=(block)  ::  layer 4
[9 10 0 1]
> =>  anoma  !=(lsh:block)
[7 [9 10 0 1] 9 90 0 1]
> =>  anoma  !=((lsh:block 3 4))
[8 [7 [9 10 0 1] 9 90 0 1] 9 2 10 [6 [7 [0 3] 1 3] 7 [0 3] 1 4] 0 2]
We can see here that block is located at index 10 inside of the anoma environment. Also note the 9 call, we are calling block to bring it to the front!
next we check lsh which is located 90 within it, nothing out of the ordinary. We use %7 to compose the indexing into the structure, which is reasonable.
When we call lsh on 3 and 4 the result is exactly like we expect, we generate out the %8 call that we disected above.
So we can already call the lsh function as if no paramartized was had. This makes sense as we know that each gate has a sample that it takes if no substitution is had.
Now let us replace the default block value with 999 (note you don't want to run this, it'll be too slow)
> =>  anoma  !=((~(lsh block 999) 3 4))
[ 8
  [8 [9 10 0 1] 9 90 10 [6 7 [0 3] 1 999] 0 2]
  9
  2
  10
  [6 [7 [0 3] 1 3] 7 [0 3] 1 4]
  0
  2
]
The only difference that was had was in in  [8 [9 10 0 1] 9 90 10 [6 7 [0 3] 1 999] 0 2]. The rest of the formula stayed the same.
However looking at this change, this should not be very shocking, as we have analyzed with the function above, we are simply pushing block to the front of the env with the [8 [9 10 0 1] ...], leaing the environment being [block anoma], then we simply wish to call 90 where lsh is located with the 6 index of the block environment being set to 999.
Note the 6 index is a gate's argument which we can see with this call:
> =>  anoma  !=(block-size:block)
[7 [9 10 0 1] 0 6]
Then we simply compute the rest of lsh with the default value being 999. Using a non large number we can see how this changes the results.
> =>  anoma  (~(lsh block 1) 3 4)
256
> =>  anoma  (~(lsh block 0) 3 4)
32
> =>  anoma  (lsh:block 3 4)
32


  

  
    
    Dumping - Anoma v0.25.0
    
    

    


  
  

    
Dumping
    

Mix.install([
  {:kino_vega_lite, "~> 0.1.10"}
])

  
    
  
  Index


	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests




	Visualization	Actors


	Hoon	Calling
	Dumping
	Setting Up


	Analysis


  
    
  
  Dumping Nock


Given a functioning Hoon environment with Anoma loaded, we can now start dumping various data in the environment.
This guide hopefully serves as a good way to give you the tools needed to dump anything for yourself.

  
    
  
  Dumping Functions


Dumping any Hoon gate is relatively easy.
However, first we need to learn how to get Hoon to let us use Nock properly. A good way is by reading the dot(.) section, as runes starting with . deal with nock operations.
In particular we wish to focus on dottar(.*), which deals with calling nock on some expression.
We won't go into detail about calling functions in this section, however there is another section that focuses solely on how to call functions and how it works in Nock.
Speaking of functions, we should know just a few things about the layout of functions, and their important indicies.
Functions in Hoon are laid out as the following:
[function sample environment-defined-in]
	Function is some nock logic we wish to run
	Sample is the default argument of the function if non is given
	Environment-defined-in is the environment the function is defined in and relies upon.

A good basic example can be seen below:
[[0 6] 777 999]
This function has an arbitrary environment of 999 and a sample of 777. The logic itself simply grabs the sample from the environment.
A good visualization of the indexing can be seen below
stateDiagram-v2
1 --> 2
1 --> 3
2 --> 4
2 --> 5
3 --> 6
3 --> 7
where we have in our concrete example
	Index	Nock
	1	[[0 6] 777 999]
	2	[0 6]
	3	[777 999]
	4	0
	5	6
	6	777
	7	999

With some basics out of the way, let us get to dumping hoon functions!
We shall dump the most basic of functions, decrement!
We can do this simply by bringing decrement to the front of the environment, and getting it in the function form of [function sample environment] we saw before. We can do this by simply stating the name of the function we wish, and then get the function out of it by getting the second index!
Note that Hoon uses function:module (f:mn:...:m1) form.
.*  dec:anoma  [0 2]
[6 [5 [1 0] 0 6] [0 0] 8 [1 0] 8 [1 6 [5 [0 30] 4 0 6] [0 6] 9 2 10 [6 4 0 6] 0 1] 9 2 0 1]
The logic here doesn't particularly matter, but here we have the nock definiton of decrement, which is wonderful!
This can be done to any function, regardless of how nested the modules are
> .*  lsh:block:anoma  [0 2]
[ 8
  [9 4 0 255]
  9
  2
  10
  [6 [0 29] 7 [0 3] 8 [9 4 0 31] 9 2 10 [6 7 [0 3] 8 [9 4 0 255] 9 2 10 [6 [7 [0 3] 9 182 0 7] 0 28] 0 2] 0 2]
  0
  2
]

  
    
  
  Casting to Nock, a useful tool


A good way to visualize the dump, is by casting the result to nock
> ;;  nock  [9 2 0 1]
[%9 p=2 q=[%0 p=1]
the p's and q's are arguments and the %9 and %0 are the nock instructions being ran.
From here, the instruction set can be consluted for the meaning of any particular instruction.
> ;;  nock  .*  dec.anoma  [0 2]
[ %6
  p=[%5 p=[%1 p=0] q=[%0 p=6]]
  q=[%0 p=0]
  r=[%8 p=[%1 p=0] q=[%8 p=[%1 p=[6 [5 [0 30] 4 0 6] [0 6] 9 2 10 [6 4 0 6] 0 1]] q=[%9 p=2 q=[%0 p=1]]]]
]

  
    
  
  Dumping Types


Types in Hoon are just functions!
A good example can be found by looking at the resource-type
> .*  resource:resource-machine  [0 2]
[ 8
  [ [8 [7 [0 7] 9 47 0 1] 9 2 10 [6 0 28] 0 2]
    [6 [6 [3 0 26] [1 1] 1 0] [0 26] 0 0]
    [6 [6 [3 0 54] [1 1] 1 0] [0 54] 0 0]
    [6 [6 [3 0 110] [1 1] 1 0] [0 110] 0 0]
    [6 [5 [1 0] 0 222] [1 0] 6 [5 [1 1] 0 222] [1 1] 0 0]
    [6 [6 [3 0 446] [1 1] 1 0] [0 446] 0 0]
    [6 [6 [3 0 894] [1 1] 1 0] [0 894] 0 0]
    6
    [6 [3 0 895] [1 1] 1 0]
    [0 895]
    0
    0
  ]
  8
  [5 [0 14] 0 2]
  0
  6
]
This however does not show how to dump the structure of a type well enough, however this can be fixed by simply just calling it!
calling a type leads to something like this
> (resource:resource-machine)
[   logic
  < 1|xpg
    [ [ roots=it(@)
        commitments=it(@)
        nullifiers=it(@)
        proofs=it(#4)
        delta=it([denom=@ sign=?(%.y %.n) amount=@])
        extra=@
        preference=%~
      ]
      [ roots=it(@)
        commitments=it(@)
        nullifiers=it(@)
          proofs
        it( ^#4
          [   logic
            < 1|xpg
              [ [ roots=it(@)
                  commitments=it(@)
                  nullifiers=it(@)
                  proofs=it(#4)
                  delta=it([denom=@ sign=?(%.y %.n) amount=@])
                  extra=@
                  preference=%~
                ]
                [ roots=it(@)
                  commitments=it(@)
                  nullifiers=it(@)
                  proofs=it(#4)
                  delta=it([denom=@ sign=?(%.y %.n) amount=@])
                  extra=@
                  preference=%~
                ]
                ?(%.y %.n)
              ]
            >
            label=@t
            quantity=@
            data=@
            eph=?(%.y %.n)
            nonce=@
            npk=@
            rseed=@
          ]
        )
        delta=it([denom=@ sign=?(%.y %.n) amount=@])
        extra=@
        preference=%~
      ]
      ?(%.y %.n)
    ]
  >
  label=''
  quantity=0
  data=0
  eph=%.y
  nonce=0
  npk=0
  rseed=0
]
Which just gives the default values. If the result is hard to read, then no problem, just forget the type information!
> `*`(resource:resource-machine)
[[[0 15] [0 0 0 0 0 0 0] [0 0 0 0 0 0 0] 0] 0 0 0 0 0 0 0]
Here we simply jsut cast it to the any type, forgetting all information, and we can now see the format of the empty resource.

  
    
  
  Dump Modules


Dumping modules is the same as dumping functions, it's just a matter that one's terminal will be flooded
> .*  resource-machine  [0 2]
[ [1 0]
...
  0
  1
]
Thus feel free to dump away. This is only useful when trying to copy this to the Elixir codebase.

  
    
  
  Dumping Hoon for Elixir


Since Anoma itself runs Nock and not Hoon, we have to take the Hoon code we have and include it in Elixir somehow.
This process isn't particular difficult, and we can do it by simply using the tools we've learned in this document.
For example, it's not uncommon when the standard library that test indicies are not out of date and need to be updated, or maybe we define out a new hoon function for testing.
In these scenarios, there is a very easy way to update the code.
Let us look at the fibonacci example in Elixir
# can be found in https://github.com/anoma/anoma/blob/base/lib/test_helper/nock.ex
  @spec factorial() :: Noun.t()
  def factorial() do
    arm = Noun.Format.parse_always("
    [ 8
      [1 1 0]
      8
      [ 1
        6
        [5 [0 30] 1 0]
        [0 13]
        9
        2
        10
        [30 8 [9 342 0 255] 9 2 10 [6 0 62] 0 2]
        10
        [6 [8 [9 20 0 255] 9 2 10 [6 [0 29] 0 28] 0 2] 0 12]
        0
        1
      ]
      9
      2
      0
      1
    ]")
    sample = 1
    [arm, sample | logics_core()]
  end
Here we have some just plain old nock string representing the function, and we append the context to it via normal Elixir. We do this to save space, as we really don't want to dump the entire Nock.logics_core/0 for every simple function.
On the Hoon side we just run this to get the proper new logic
> .*  fib:tests  [0 2]
[ 8
  [1 1 0]
  8
  [ 1
    6
    [5 [0 30] 1 0]
    [0 13]
    9
    2
    10
    [30 8 [9 342 0 1.023] 9 2 10 [6 0 62] 0 2]
    10
    [6 [8 [9 20 0 1.023] 9 2 10 [6 [0 29] 0 28] 0 2] 0 12]
    0
    1
  ]
  9
  2
  0
  1
]
and then replace the old logic with the new code.
  @spec factorial() :: Noun.t()
  def factorial() do
    arm = Noun.Format.parse_always("
    [ 8
      [1 1 0]
      8
      [ 1
        6
        [5 [0 30] 1 0]
        [0 13]
        9
        2
        10
        [30 8 [9 342 0 1.023] 9 2 10 [6 0 62] 0 2]
        10
        [6 [8 [9 20 0 1.023] 9 2 10 [6 [0 29] 0 28] 0 2] 0 12]
        0
        1
      ]
      9
      2
      0
      1
    ]")
    sample = 1
    [arm,, sample | logics_core()]
  end
The process is the same for the code in Nock, just dump the [0 2] index of the module and replace the string with the result you get in your terminal.

  
    
  
  Dumping Indexing Offsets


The tools that we have explored so far only deal with dumping definitions, however they do not explain where these functions are stored in the environment.
That is where zaptis(!=) comes handy.
zaptis(!=) simply gives us the hoon expression of the argument handed to it.
Let us start off simple with zaptis(!=), let us look at what saying anoma actually does.
> !=(anoma)
[0 46]
Interesting, we can see that saying anoma, indexs into the current environment by 46. The current environment in Hoon can be conjured with ..
> !=(.)
[0 1]
With this knowledge in hand, we can verify that anoma really is at index 46!
> =(.*(. [0 46]) anoma)
%.y
Now that we know how to get the index for names like anoma, what about trying to get the index of a function like dec inside of the anoma environment.
> !=(dec:anoma)
[7 [0 46] 9 342 0 15]
> ;;  nock  !=(dec:anoma)
[%7 p=[%0 p=46] q=[%9 p=342 q=[%0 p=15]]]
Here it's a bit more complicated to let us break it down step by step.
	[%7 p=[%0 p=46] q=...]	In the section where we are calling %7.
	This has the effect of just trying to get anoma to be the subject of the following q computation.


	Now at q=[%9 p=342 q=[%0 p=15]] we are running this on anoma itself.	%9 is rather basic, trying to call the given index p at arm q.
	In our case, dec is located at index 342 inside of arm at the layer/module located at [0 15].
	[0 15] is really layer 1 in the source code and is properly documented as such



~%  %one  +  ~
|%
++  dec  ::  +342
  ~/  %dec
  |=  a=@
  ?<  =(0 a)
  =|  b=@
  |-  ^-  @
  ?:  =(a +(b))  b
  $(b +(b))

Thus, it's not very complicated, thus in the form
> !=(dec:anoma)
[7 [0 46] 9 342 0 15]
all we have to pay attention to is the 342 and the 15, some more examples show this off well
> !=(dec:anoma) ::  index 342 at layer 1
[7 [0 46] 9 342 0 15]
> !=(add:anoma) ::  index 20 at layer 1
[7 [0 46] 9 20 0 15]
> !=(trap:anoma) ::  index 20 at layer 2
[7 [0 46] 9 20 0 7]
> !=(unit:anoma) ::  index 42 at layer 2
[7 [0 46] 9 42 0 7]
Here for any non nested module we can see the layers and indexs quite plainly!

  
    
  
  How Index of Layers Change


The hoon environment is a binary tree. Included below is an extended diagram that we will use for our explanation.
stateDiagram-v2
1 --> 2
1 --> 3
3 --> 6
3 --> 7
7 --> 14
7 --> 15
15 --> 30
15 --> 31
Whenever, a layer is made in hoon, we should think of it as pushed onto the env. So for Anoma the layers can be seen like this
stateDiagram-v2
layer_four --> code_in_layer_four
layer_four --> layer_three
layer_three --> code_in_layer_three
layer_three --> layer_two
layer_two --> code_in_layer_two
layer_two --> layer_one
layer_one --> code_in_layer_one
layer_one --> 0_3_99
If we pushed layer 5, then everything shifts, layer 1 moves from 15 to 31.
Thus the indexing works on a rather simple formula that can be read about: here. The code is not exactly this formula, but below we will show how it shapes up.
series = 1..5 |> Enum.map(fn i -> 2 ** i - 1 end)
indicies = 1..5
my_data = %{series: series, indicies: indicies}
%{series: [1, 3, 7, 15, 31], indicies: 1..5}
VegaLite.new(width: 200, height: 300, title: "Indexing Series")
|> VegaLite.data_from_values(my_data, only: ["indicies", "series"])
|> VegaLite.mark(:bar)
|> VegaLite.encode_field(:x, "indicies", type: :quantitative)
|> VegaLite.encode_field(:y, "series", type: :quantitative)


  

  
    
    Setting up Hoon - Anoma v0.25.0
    
    

    


  
  

    
Setting up Hoon
    


  
    
  
  Index


	Toc
	Contributing	Understanding Any Module
	Style Guide
	Writing Documents
	Examples Over Testing
	Git
	Iex
	Mnesia Vs Actor State
	Observer
	Testing	Running Tests
	Writing Tests




	Visualization	Actors


	Hoon	Calling
	Dumping
	Setting Up


	Analysis


  
    
  
  Getting a Good Hoon environment


A good starting point is to read Hoon's docs on environment
It's good to follow it until the section "Mount a desk"
From here we can setup the environment quite nicely
|merge %anoma our %base
|mount %anoma
From here we want to remove all the uneeded files, get it to the following state:
8 taichi@Gensokyo:~/Documents/Workspace/Hoon/zod git:master:? % tree anoma
anoma
├── mar
│   ├── hoon.hoon
│   ├── mime.hoon
│   ├── noun.hoon
│   ├── txt-diff.hoon
│   └── txt.hoon
└── sys.kelvin

2 directories, 6 files

with sys.kelvin having only [%zuse 412]
Now that we have our minimal state, we can symlink in the files in
https://github.com/anoma/anoma/tree/base/hoon
into lib. It should now look something like this
9 taichi@Gensokyo:~/Documents/Workspace/Hoon/zod git:master:? % tree anoma
anoma
├── lib
│   ├── anoma.hoon -> .../hoon/anoma.hoon
│   ├── logics.hoon -> .../hoon/logics.hoon
│   ├── resource-machine.hoon -> .../hoon/resource-machine.hoon
│   └── tests.hoon -> .../hoon/tests.hoon
├── mar
│   ├── hoon.hoon
│   ├── mime.hoon
│   ├── noun.hoon
│   ├── txt-diff.hoon
│   └── txt.hoon
└── sys.kelvin

3 directories, 10 files

Now we can mount our anoma code into hoon
> |commit %anoma
>=
> =anoma -build-file /=anoma=/lib/anoma/hoon
> =resource-machine -build-file /=anoma=/lib/resource-machine/hoon
> =logics -build-file /=anoma=/lib/logics/hoon
> =tests -build-file /=anoma=/lib/tests/hoon
From here, the hoon environment is ready to be used and it should work just as Anoma uses Nock.


  

  
    
    Anoma.Constants - Anoma v0.25.0
    
    

    


  
  

    
Anoma.Constants 
    




      
        Summary


  
    Functions
  


    
      
        
  
    
    Anoma.Supervisor - Anoma v0.25.0
    
    

    


  
  

    
Anoma.Supervisor 
    



      
I am the top level supervisor for the Anoma node application.
I manage the shared processes and multiple nodes.

  
    
  
  Shared Processes


	Registry
	NodeSupervisor


      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Anoma.System.Directories - Anoma v0.25.0
    
    

    


  
  

    
Anoma.System.Directories 
    



      
I provide out utilities for ensuring user Data, Config,
etc. directories are properly setup for the host operating system.
Please use me when trying to write to user directories.

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Anoma.TransparentResource - Anoma v0.25.0
    
    

    


  
  

    
Anoma.TransparentResource 
    






  

  
    
    Anoma.TransparentResource.Action - Anoma v0.25.0
    
    

    


  
  

    
Anoma.TransparentResource.Action 
    




      
        Summary


  
    Types
  


    
      
        
  
    
    Anoma.TransparentResource.Delta - Anoma v0.25.0
    
    

    


  
  

    
Anoma.TransparentResource.Delta 
    



      
delta functions. not a struct don't make it a struct

      


      
        Summary


  
    Types
  


    
      
        
  
    
    Anoma.TransparentResource.LogicProof - Anoma v0.25.0
    
    

    


  
  

    
Anoma.TransparentResource.LogicProof 
    




      
        Summary


  
    Types
  


    
      
        
  
    
    Anoma.TransparentResource.Resource - Anoma v0.25.0
    
    

    


  
  

    
Anoma.TransparentResource.Resource 
    



      
resource struct

      


      
        Summary


  
    Types
  


    
      
        
  
    
    Anoma.TransparentResource.Transaction - Anoma v0.25.0
    
    

    


  
  

    
Anoma.TransparentResource.Transaction 
    




      
        Summary


  
    Types
  


    
      
        
  
    
    Glossary - Anoma v0.25.0
    
    

    


  
  

    
Glossary 
    




      
        Summary


  
    Functions
  


    
      
        
  
    
    IdentityMap - Anoma v0.25.0
    
    

    


  
  

    
IdentityMap 
    



      
A map with an identity value; all keys not explicitly assigned a value map to
the identity.

      


      
        Summary


  
    Types
  


    
      
        
  
    
    Livebook - Anoma v0.25.0
    
    

    


  
  

    
Livebook 
    



      
I generate out extra information for Livebook
My main purpose is to generate out the TOC for each livebook
document we have.
to do this please run toc_toplevel/0
To set a certain order please set sort_order/0 to have the updated
order

  
    
  
  API


	sort_order/0
	toc_toplevel/0
	get_all_livemd_documents/0
	example_toc/0


      


      
        Summary


  
    Types
  


    
      
        
  
    
    MapSetMap - Anoma v0.25.0
    
    

    


  
  

    
MapSetMap 
    



      
An IdentityMap where the values are MapSets, plus some convenient helper functions.

      


      
        Summary


  
    Types
  


    
      
        
  
    
    Anoma.RM.DumbIntent - Anoma v0.25.0
    
    

    


  
  

    
Anoma.RM.DumbIntent 
    




      
        Summary


  
    Types
  


    
      
        
  
    
    Anoma.RM.Intent - Anoma v0.25.0
