
Anoma Research Topics | TECHNICAL REPORT

Anoma Network Architecture
TG X Thotha

aHeliax AG

* E-Mail: tg@heliax.dev

Abstract
We present the Anoma network and software architecture, and its underlying mathematical and communication mod-
els that provide the communication infrastructure for our distributed systems protocols.
The architecture includes a distributed name and identity system using petnames, a trust and reputation mechanism
based on service commitments, a modular transport and routing system, and a sovereign domain system that enables
pluralistic interoperability.
Domains provide distributed immutable and mutable data storage and dissemination services, where each domain
induces a peer-to-peer overlay with its own authentication, membership, topology, message dissemination and storage
protocols.
The communication model is inspired by the actor model, where actors communicate via message passing in a dis-
tributed system. Message send allows expressing routing & transport selection preferences and constraints. Message
delivery semantics are either unreliable or reliable casual delivery. Nodes maintain trust and reputation metrics as
well as measurements about other nodes, which influences node selection in routing algorithms. Compositional cryp-
tographic identities induce unicast, multicast (pub/sub), and anycast communication channels.

Keywords: distributed systems, peer-to-peer networks

Received 2024-MM-DD; Revised 2024-MM-DD; Published: 2024-MM-DD)

1. Introduction
1.1. Design overview.

1.1.1. Network architecture. The network architec-
ture consists of sovereign domains that provide heteroge-
nous and interoperable services in the network.

The basic set of network services offered by the system
are a distributed identity and name system based on cry-
tographic identities, a distributed encrypted data storage
system for immutable and mutable data, and a data dissem-
ination and synchronization protocol with a publish/sub-
scribe (pub/sub) interface for the update and synchroniza-
tion of mutable data structures.

Each domain has its own peer-to-peer overlay network
and determines its own membership, authentication mech-
anism, and network protocols. Domains offer publish/-
subscribe (pub/sub) and storage services for immutable
and mutable data structures, which provide the underly-
ing mechanisms for higher level protocols in the system.
Domains are interoperable via a common protocol for ex-
ternal requests that allows non-members to query informa-
tion from domains and thus enables heterogenous interop-
erability.

The network architecture allows domains with different
synchronization models. A domain can either work with
a single globally synchronized data structure, or choose to
rely onMergeable Replicated Data Types (MRDT) [KPSJ19]
or Conflict-free Replicated Data Types (CRDT) (author?)
[SPBZ11] that allow domains to synchronize data despite
network partitions, and thusmultiple instances of the same
domain can coexist both on the core network and various
edge networks. Such domains are considered grassroots, as
defined by [Sha24].

Node-to-node connectivity is provided by a modular trans-
port and routing system where different transport proto-
cols offer different ordering, reliability and security guar-
antees, while the routing system supports unicast, multi-
cast, and anycast communication based on cryptographic
destination identities.

Asynchronous user-to-user communication is made possi-
ble by encrypted inboxes hosted by user-designated nodes.

The communication model is inspired by the actor model,
where an engine in our system is a process that communi-
cates via message passing.

A node is a set of engine instances in a single trust domain
that run on a network-connected computer, and may par-
ticipate in zero or more domains.

A user interacts with the network via nodes that allow the
user to send and receive messages via user-facing engines,
which are typically desktop or mobile applications with a
user interface.

Each user, node, pub/sub topic, and domain is addressed by
a cryptographic identity. A distributed identity and name
system is responsible for creating and updating bindings
between names and identities and addresses, such as node
identity to transport addresses where a node is reachable
at, domain identity to node identities handling join and ex-
ternal requests, pub/sub topic identity to publisher node
identities, and user identity to inbox node identities.

2. System model
2.1. Engines. The communication model is inspired by
the actor model, where processes, or actors, communicate
via asynchronous message passing in a distributed system.

DOI: XXXXXXX.YXXXXXX Anoma Research Topics | | 1–9

https://art.anoma.net
https://dx.doi.org/XXXXXXX.YXXXXXX


We refer to these processes as engines in our model.

Each running engine instance has local state, andmay send
and respond to messages, react to timer events, and spawn
other engines.

A node consists of a set of running engine instances, has
a cryptographic identity and a number of transport ad-
dresses. Nodes communicate with each other over authen-
ticated and encrypted transport channels.

2.2. Communication patterns. Cryptographic identi-
ties induce unicast, multicast (publish/subscribe), and any-
cast communication channels.

• Unicast: direct messages between two engines.
• Multicast: messages sent to a pub/sub topic by one or
more authorized publishers and delivered to all sub-
scribers.

• Anycast: messages sent to any known member of a
domain that is designated to serve requests.

2.3. Message routing. Destination routing is used for
routing messagess based on cryptographic identities. The
network architecture is layered and consists of the follow-
ing components that enable this:

• Transport: responsible for establishing and maintain-
ing encrypted point-to-point connections between
nodes. It supports various existing transport proto-
cols, as well as multiplexing node-to-node connec-
tions over multiple transport connections.

• Routing: responsible for routingmessages to their des-
tination identity (a user, node, topic, or domain) via
a unicast, multicast, or anycast protocol that corre-
sponds to the type of destination. It performs address
resolution using locally available information main-
tained by the identity and name system, and uses the
transport layer for sending unicast messages to nodes.

• Name & address resolution: responsible for maintain-
ing a local database of known identities alongwith the
self-signed bindings they advertise that allows resolv-
ing user, topic, and domain identities to node identi-
ties, and node identities to transport addresses.

2.4. Message sending. Messages are sent to and routed
based engine, topic, or domain destination identities. Mes-
sage send allows expressing routing & transport selection
preferences and constraints, such as reliability, ordering,
and security considerations.

2.5. Message delivery. Unicast message delivery uses
encrypted transport channels between nodes with optional
reliability. Multicast communication uses a topic-based
reliable publish/subscribe channels with optional content-
based filters.

In both cases, reliable causal delivery causal delivery is en-
sured using a system of causal dependencies and implicit
and explicit acknowledgements. This allows the routing
system to detect lost messages, try to recover them, and
delay delivery of messages until after their causal depen-
dencies have been delivered.

2.6. Domains. A domain is a sovereign subnetwork
that has an owner that defines the protocols and authenti-
cationmechanism used in the domain. Each domain has its
own peer-to-peer overlay, but remain interoperable by us-
ing a common protocol for sending external requests to do-
main members, thereby enabling pluralistic interoperabil-
ity between the various domains in the network.

Domains provide distributed data storage and dissemina-
tion services to participants, and a mechanism for non-
members to query information.

They enable creating administrative and security bound-
aries between different subnetworks that protects domain
members from external attacks, while ensuring that infor-
mation can flow between them when authorized, via dedi-
cated external facing nodes that serve external requests.

2.7. Immutable andmutable data. A distributed data
storage system allows storing immutable and mutable data
in the network. Immutable data is encrypted and content-
addressed, while mutable data uses encrypted pub/sub
channels that store and forward an append-only log of
messages that form a causal DAG backed by a Blocklace
[AS24] data structure. Pub/sub messages may contain
partially ordered application messages, references to im-
mutable data, or operations on Mergeable Replicated Data
Types (MRDTs) [KPSJ19] and Conflict-free Replicated Data
Types (CRDTs) [SPBZ11].

A system of acknowledgements and storage commitments
allow distributed indexing of data, where each node builds
an index that contain a mapping of content-addressed data
identifiers to storage node identifiers, and may also be
queried by other nodes to aid locating data in the network.

2.8. Identities, names, and addresses. Each user,
node, domain, and pub/sub topic has its own cryptographic
identity, which is also used as an address for sending mes-
sages.

A distributed name system offers secure, memorable, but
not globally unique names, thereby considered a petname
system [Sti05]. A self-signed zone is assigned to each iden-
tity in the system (i.e. to each user, node, topic, and do-
main), that contains a list of name to record mappings,
where records may contain bindings between names, iden-
tities, and transport addresses, as well as pointers to other
zones, enabling transitivity of names.

Cryptographic identities may be single or compositional
that represent a single entity or a group of entities, respec-
tively. In the latter case threshold cryptography is used.
Compositional identities can be used to address a group of
identities and for shared ownership of domains and pub/-
sub topics.

2.9. Trust, reputation, and service commitments.
Each node collects performance measurements and main-
tains a reputation score about other nodes in the network
that indicates to what extent a node fulfils the services it
committed to. This information influences node selection
in various protocols, and also be sharedwith other nodes in
the network that may choose to take it into consideration

DOI: XXXXXXX.YXXXXXX Anoma Research Topics | | 2

https://dx.doi.org/XXXXXXX.YXXXXXX
http://art.anoma.net


to some extent, especially when shared by nodes deemed
sufficiently trustworthy based on a locally assigned trust
score.

{{#< include req.md >}}

{{#< include related.md >}}

3. Network Architecture
The network consists of sovereign domains that nodes of
users may join and participate in, where each domain de-
fines its own network protocols and authentication mech-
anism.

Domains offer distributed storage and pub/sub services,
that allows domain members to publish, update, and re-
trieve both immutable and mutable data structures, part of
which can be selectively shared with non-members.

In addition to the globally reachable and continously syn-
chronized core network, a domain may also be instantiated
on edge networks with opportunistic synchronization, in
which case it acts as a Grassroots System [Sha24]. This is
possible when the domain uses mergeable replicated data
types that allow conflict-free data synchronization of con-
current updates.

3.1. Networks. In the core network nodes typically
have stable connectivity and publicly reachable IP ad-
dresses, and thus the expected churn rate is low/moder-
ate, i.e. nodes rarely disconnect from and reconnect to the
network, mostly due to occasional network or power dis-
ruptions. Node churn triggers topology changes that the
network must react to.

Edge networks may be connected to the core network or
other edge networks either permanently or intermittently,
and have high churn rates, i.e. nodes running on mobile
devices continuously come and go.

Due to the different dynamics of networks, different net-
work protocols are required for unicast and multicast com-
munication between nodes.

On edge networks mobile nodes of end users can communi-
cate directly with each other. They can reach remote nodes
on other networks via relays in the core network, which en-
able asynchronous communication and basic location pri-
vacy. Nodes with stronger location privacy requirements
may use onion routing or a mix network.

3.2. Communication primitives. The basic commu-
nication primitive is unicast communication between en-
gines, upon which multicast and anycast communication
protocols are built.

Unicast communication is direct communication between
nodes or users. Direct node-to-node communication can
happen over various transport protocols that provide dif-
ferent reliablity, ordering, security, and location privacy
guarantees. When connecting to a remote node, a trans-
port selection mechanism selects an appropriate transport
protocol based on constraints and preferences that may be

specified per node or even per message. User-to-user com-
munication is done via relays and is asynchronous and en-
crpted.

Multicast communication is done via topic-based publish/-
subscribe (pub/sub) protocols inside domains, while any-
cast requests can be sent by external nodes to domainmem-
bers who serve external requests.

Routing is based on the destination address in each mes-
sage, which is the user or node identity for unicast, the
pub/sub topic identity for multicast, and the domain iden-
tity for anycast communication.

3.3. Nodes. The network consists of nodes that may
communicate with each other either directly or via relays,
and may participate in any number of domains.

Each node is addressed by a cryptographic identity, and has
a number of transport addresses where it is reachable at.

As part of a decentralized discovery and address resolu-
tion mechanism, each node issues a self-signed, versioned
Node Advertisement that contains the current transport ad-
dresses of the node The node publishes and updates these
advertisements in a pub/sub topic that corresponds to the
node identity.

#| label: NodeAdvert

#| fig-cap: Node Advertisement

type NodeAdvert :=

mkNodeAdvert {

id : NodeID;

addrs : Set (Pair TransportAddress Priority);

version : Nat;

created : AbsTime;

sig : Commitment;

};

3.4. Users. Users send and receive messages, publish,
and retrieve data via nodes in the network. Typically, users
run a node on each of their devices, where each node con-
trolled by the user has access to part of the user’s messages
and data, have access to all domains the user is a member
of, and have its own set of pub/sub topic subscriptions.

Each user has its own cryptographic identity, which allows
users to establish cryptographic channels among them,
even asynchronously with the help of relay nodes. Users
may also join domains, which allows them to access and
publish immutable data blobs, as well as read and update
mutable data structures.

A UserAdvert ? ] allows a user to designate relay nodes
for receiving encrypted messages asynchronously.

Users may opt to use relays to send and receive messages
that store and forward encrypted messages for them. This
enables secure asynchronous messaging, and offers basic
location privacy for users, as they can advertise the relay
as their point of contact to other nodes instead of revealing
their own IP address.

For stronger location privacy guarantees, users may opt

DOI: XXXXXXX.YXXXXXX Anoma Research Topics | | 3

https://dx.doi.org/XXXXXXX.YXXXXXX
http://art.anoma.net


to use multiple relays, connect to relays using privacy-
preserving transports, such as onion routing offered by the
Tor network, or use a mix network that offers pub/sub and
storage services.

#| label: UserAdvert

#| fig-cap: User Advertisement

type UserAdvert :=

mkNodeAdvert {

id : UserID;

nodes : Set NodeAdvert;

relays : Set NodeAdvert;

prekeys : Set PreKey;

version : Nat;

created : AbsTime;

sig : Commitment;

};

3.5. Domains. The network consists of sovereign do-
mains. A domain is a sub-network with its own crypto-
graphic identity. Domains enable pluralistic interoperabil-
ity, i.e. different domains may run different protocols in-
ternally, while at the same time able to respond to external
requests, which uses a common protocol understood by ev-
ery domain.

A domain may be instantiated in one or more inter-
connected overlay networks that may be partitioned occa-
sionally when the protocols used in the domain allow so.
This enables both single-instance domains in the core net-
work with globally synchronized data structures, as well
as grassroots [Sha24] domains, which may have multiple
instances simultaneously in the core network and on var-
ious edge networks and may often be partitioned, hence
they employ mergeable data structures for data synchro-
nization, such as CRDTs [SPBZ11] and MRDTs [KPSJ19].

Domain creation is permissionless, it only requires a Do-
main Advertisement ? ] signed by the domain owner(s),
which contains the domain configuration, and may be dis-
tributed to current and invited members either via mes-
sages in the network, or out-of-band. The Domain Adver-
tisement specifies the authentication mechanism used to
join the domain, the network protocols used in the domain,
and the list of nodes that serve join and external requests.

#| label: DomainAdvert

#| fig-cap: Domain Advertisement

type DomainAdvert :=

mkDomainAdvert {

id : DomainID;

join_req : Set NodeAdvert;

ext_req : Set NodeAdvert;

protocols : Map String Protocol;

version : Nat;

created : AbsTime;

sig : Commitment;

};

Theexact set of protocols used in a domain is defined by the
DomainAdvert, it typically consists of a membership pro-

tocol, a topic-based publish-subscribe protocol, and a dis-
tributed storage protocol.

In a domain, member’s nodes establish direct connections
among each other. Domains with stronger privacy require-
ments where members require location privacy may opt to
use a mix network that provides pub/sub and storage ser-
vices.

3.5.1. Pub/sub topics. A topic-based publish/subscribe
(pub/sub) protocol allows domain members to subscribe to
topics of interest, where authorized publishers for a given
topic may publish messages. For each topic subscribers
may also define additional content-based filters according
to their interests.

Topic creation and subscription are permissionless, while
publishing is permissioned. In addition, publishers may en-
crypt messages published in topics, to enable end-to-end
security between publishers and subscribers when relays
are added to the topic to aid content distribution and avail-
ability.

A topic is defined by a signed Topic Advertisement.

type TopicAdvert :=

mkTopicAdvert {

id : TopicID;

publishers : List MemberID;

relays : List NodeID;

tags : List String;

version : Nat;

created : AbsTime;

sig : Commitment;

};

3.5.2. Pub/submessages. Pub/sub messages published
in a topic must be signed by an authorized publisher and
may either contain operations on a MRDT or CRDT, a no-
op that serves as an explicit acknowledgement of previous
messages, or a reference to an immutable storage object.

Before a message is accepted or forwarded by a subscriber
it must pass a number of validation tests which ensure that
publishers follow the rules set by the topic owner in the
Topic Advertisement ? ]: - It must be signed by an autho-
rized publisher - It must contain a valid operation the pub-
lisher is authorized to perform - It must form a linear his-
tory with the publisher’s own previous messages

Messages in a topic form a Blocklace [AS24] data struc-
ture that represent a DAG of causal history of messages
published in the topic. Each message references the pub-
lisher’s own previous message, as well as the last locally
known message for each publisher. This establishes a par-
tial order and allows subscribers to detect missedmessages,
since the DAG is connected and all messages are eventu-
ally delivered to all subscribers. Missing messages can be
recovered by sending explicit requests to other subscribers
or publishers in the topic.

The message history recorded in the DAG allows sub-
scribers to detect malicious publishers that send different
messages to different nodes by publishing multiple inde-
pendent messages that do not depend on or reference each

DOI: XXXXXXX.YXXXXXX Anoma Research Topics | | 4

https://dx.doi.org/XXXXXXX.YXXXXXX
http://art.anoma.net


other, as publishers are required to publish a linear history
of messages to prevent such equivocations that can create
ambiguity and inconsistency.

Messages may also specify causal dependencies on other
messages from the same topic, which must be delivered
before a subscriber can process the message.

TODO: DAG diagram

3.5.3. Immutable data. Immutable data is stored by a
distributed blob storage protocol, where blobs are binary
data objects that are first chunked to smaller, moremanage-
ble pieces, then encrypted using convergent encryption,
and finally organized in a Merkle tree, where leaf nodes
contain data chunks and internal nodes contain pointers
to either leaf nodes. or other internal nodes. Multiple lev-
els of internal nodesmay be necessarywhen the chunk size
is smaller than the size of all chunk hashes.

The blob identifier is the root chunk in the Merkle tree,
which is necessary to request the blob from the network,
and allows traversing the Merkle tree but does not allow
decryption. To be able to decrypt the blob, a decryption
key must be passed along with the root chunk ID.

Nodes may issue storage commitments, that allows them
to commit to storing a blob for a specific amount of time.
These storage commitments are then published in pub/sub
topics or shared directly, which allows nodes to build a lo-
cal index of known blobs along with the nodes that store
it.

When requesting a blob, the request is sent to one of the
locally known storage nodes. If none is available, then a
random walk is performed along the domain overlay to lo-
cate the blob. When successful, one or more storage com-
mitments are returned to the requestor.

3.5.4. Mutable data. The Blocklace itself is a CRDT,
an append-only log of messages, which serves as a basis
for constructing more complex mergeable data structures:
each topic corresponds to a single data structure that comes
with a data type definition in the Topic Advertisement ? ],
which defines the set of allowed operations on the data
structure (e.g. a counter may have a single increment op-
eration, or a grow-only set an add operation).

Operations on mutable data structures may reference im-
mutable data blobs, this allows e.g. constructing a mutable
set of immutable blobs.

In a domain, the set of available mutable data structures
are published in an index, which contains a map of refer-
encable data paths to cryptographic topic IDs that contain
the data structure.

This allows a unified mechanism for defining, accessing,
and updating mutable data structures used by the domain.
Mutable data structures are used by the membership proto-
col for the set of domain members, and by the name system
to map names to identities.

3.5.5. Join and external requests. The Domain Adver-
tisement ? ] serves the purpose of advertising a list of

nodes that serve join requests and external requests from
non-members.

Join requests may require an authentication mechanism,
such as a pre-shared key, public key certificate, or zero
knowledge proof.

External requests are used by non-members to request in-
formation from the domain without joining, and may re-
quire an authentication token, such as a hash-based mes-
sage authentication code (MAC).

Anycast routing is used to send messages to any member
of a domain that is designated to serve join or external re-
quests.

Domain A

A
B

C
D

F

E

M

JoinReq

N

ExtReq

Figure 1. Domain overlay (A-F). A & B handle external requests from N
& M

3.5.6. Membership. The domain’s membership is the
set of nodes that have joined and are allowed to participate
in the network protocols of the domain.

Domains employ a full membership protocol, which have
a number of advantages over partial membership proto-
cols: it avoids many attack vectors by Byzantine members
that partial membership protocols suffer from, such as view
poisoning and eclipse attacks, which are costly to defend
against (e.g. Brahms [BGK+09], a partial membership pro-
tocol, uses proof-of-work to limit view pushes a member is
allowed to perform).

Full membership also reduces protocol complexity, and of-
fers faster convergence for membership updates at the ex-
pense of storing more state and a decrease in scalability.
However, it can still support tens of thousands of members,
as shown by Fireflies [JRVJ15].

Membership is stored as a mutable data structure in the
domain as a permissioned CRDT map where each member
can update only its own record. The membership record
contains the Node Advertisement of the member, as well as

DOI: XXXXXXX.YXXXXXX Anoma Research Topics | | 5

https://dx.doi.org/XXXXXXX.YXXXXXX
http://art.anoma.net


its pub/sub topic subscriptions with optional content filters
per topic.

Updates to the CRDT map are disseminated via a pub/sub
topic that all members subscribe to. Periodic acknowledge-
ment messages in this topic serve as keep-alive messages
that allow other members to determine when a node was
last active, and thus serves as a mechanism to find recently
online nodes in the domain overlay.

3.6. Communication diagrams. TODO remove
router from intra-node diagram

Router

Transport

Engine_Z

Engine_X

Topic_1

Engine_Y

X to Y

Topic_1

Topic_1

X to Y

Figure 2. Intra-node communication

Node A

Node B

A_R

A_T

A_X

A_Y A_Z

B_T

B_R

B_Y

B_X

B_Z

Figure 3. Unicast communication

4. Node architecture
Each node has a cryptographic identity that uniquely iden-
tifies it in the network. A node consists of a set of running
engines. Local engines communicate with each other di-
rectly, while they reach remote nodes via the Router and
Transport engines.

The Transport engine is responsible for maintaining au-
thenticated and encrypted network connections between
nodes via a modular transport system that supports vari-
ous transport protocols with different reliability, latency,
and privacy guarantees. Transport protocols initially sup-
ported include QUIC and TLS, later this can be extended
with onion-routed, mix, mesh, and delay-tolerant network
protocols.

The Router engine routes incoming and outgoingmessages
from and to local engines, based on the destination address
of each message, which consists of a node and engine iden-
tity.

4.1. Addressing. Nodes, pub/sub topics, and domains
are addressed by a cryptographic identity. The node ad-
dress is defined as the identity of the Router Engine of the
node.

Engine identities are composed of the node identity and a
per-node unique engine identifier.

In order to connect to a node, its transport addresses must
be known locally. Similarly, for domains, one or more do-
main members’ node identities must be known. For this
purpose signed advertisement messages are used, which
bind addresses together from different layers:

• NodeAdvert: binds a node address to transport ad-
dresses

• DomainAdvert: binds a domain address to node ad-
dresses

These are transmitted either as part of network protocols
or out-of-band, and are stored by theNetwork Identity Store
Engine of each node.

4.2. Transport. The Transport Engine is responsible for
establishing andmaintaining network connections to other
nodes via transport protocol modules, which provide au-
thenticated and encrypted transport channels between
nodes.

Transport maintains a pool of open connections to other
nodes, and reuses them whenever a message needs to be
sent to one of the connected nodes.

The modular transport architecture allows a node to sup-
port various transport protocols, such as protocols over
IP, public-key addressed overlay networks, mesh networks,
and delay-tolerant networks.

All transport protocols must provide authenticated and en-
crypted connections between nodes. Ordering and reliabil-
ity guarantees may vary, an appropriate transport protocol
is selected according to transport constraints and require-
ments specified in messages to transmitted.

DOI: XXXXXXX.YXXXXXX Anoma Research Topics | | 6

https://dx.doi.org/XXXXXXX.YXXXXXX
http://art.anoma.net


Node A

Node B

Node C

Node D

A_R

A_PS

T

A_T

B C

A_X

A_Y

BC

B_T

B

C_T

C

T

B_R

B_PS

B

D

B_X

T

B_Y

TD

B
D_T

D

C_R

C_PS

C

C_X
T

C_Y

T

C

D_R

D_PS

D
D_X

T

D_Y

T

T

D

Figure 4. Multicast communication

DOI: XXXXXXX.YXXXXXX Anoma Research Topics | | 7

https://dx.doi.org/XXXXXXX.YXXXXXX
http://art.anoma.net


Router

Transport

Engine_Z

Engine_X

Topic_1

Engine_Y

X to Y

Topic_1

Topic_1

X to Y

Figure 5. Intra-node communication

The preferred transport protocol is nQUIC [HAWSC19], as
this provides the best security and lowest connection es-
tablishment overhead out of the initially supported set of
protocols. Alternatively, QUIC-TLS [TT21] may be also
used when nQUIC is not supported by an implementation.
QUIC uses UDP, which may be blocked on 2-5% of net-
works [KT22], in which case TLS 1.3 [Res18] is available
as a fallback option that runs over TCP.

Certain nodes may run in web browsers, which may use ei-
ther the WebTransport [AJV24] or WebSocket [FM11] pro-
tocols. These allow HTTP connections to be upgraded to
bidirectional streams over QUIC-TLS and TLS 1.3, respec-
tively.

A Transport Address contains all information necessary for
a transport module to establish a connection, including the
long-term public key used by the transport protocol. In
case of TLS, which is used by all of the above protocols,
this is the public key of the self-signed X.509 certificate.
NodeAdvert messages contain one or more transport ad-
dresses to facilitate connection establishment.

4.2.1. QUIC. QUIC [IT21] allows stream multiplexing
with ordered, reliable delivery for each stream indepen-
dently, which reduces latency by removing head-of-line
blocking across different streams. QUIC also supports
unreliable, unordered delivery via a protocol extension
[PKS22].

When using reliable, ordered communication, a stream is
created for each source-destination engine address pair.
Unreliable messages are useful for protocols such as multi-
cast and gossip messages that do not require acknowledge-
ment, as these protocols handle resilience themselves.

The most common transport security protocol used with
QUIC is TLS [TT21]. However, TLS has the drawback of
using an X.509 certificate, which is unnecessary for decen-
tralized networks that do not rely on trusted Certificate Au-

thorities (CA).

Hence nQUIC [HAWSC19] is the preferred alternative that
uses the Noise Protocol Framework [Per18] with the IK pat-
tern to secure connections.

4.2.2. Connection establishment. A signed NodeAd-
vert binds a node ID to one or more transport addresses.
In order to establish a connection, a NodeAdvert must be
known by the local node.

A transport protocol is chosen based on the transport con-
straints and requirements specificied in the message, with
a fallback to local configuration associated with nodes or
the defaults.

TODO:

• 0-RTT
• TLS cert verification

4.2.3. Serialization. Serialization (marshalling) is nec-
essary before transmitting messages over the network.

Requirements:

• binary

• schema

• versioning

• fast

• suitable candidates

– BARE
– ProtoBuf

5. Concluding remarks
6. Future work
References

References
AJV24. Bernard Aboba, Nidhi Jaju, and Victor

Vasiliev. Webtransport. 2024. (cit. on p. 8.)
AS24. Paulo Sérgio Almeida and Ehud Shapiro.

The blocklace: A universal, byzantine fault-
tolerant, conflict-free replicated data type,
2024. (cit. on pp. 2 and 4.)

BGK+09. Edward Bortnikov, Maxim Gurevich, Idit Kei-
dar, Gabriel Kliot, and Alexander Shraer.
Brahms: Byzantine resilient random mem-
bership sampling. Computer Networks,
53(13):2340–2359, 2009. (cit. on p. 5.)

FM11. Ian Fette and Alexey Melnikov. The web-
socket protocol. 2011. (cit. on p. 8.)

HAWSC19. Mathias Hall-Andersen, David Wong, Nick
Sullivan, and Alishah Chator. nQUIC: Noise-
based QUIC packet protection. Cryptology
ePrint Archive, Paper 2019/028, 2019. https:
//eprint.iacr.org/2019/028. (cit. on p. 8.)

IT21. Jana Iyengar and Martin Thomson. Quic: A
udp-based multiplexed and secure transport.
2021. (cit. on p. 8.)

DOI: XXXXXXX.YXXXXXX Anoma Research Topics | | 8

https://eprint.iacr.org/2019/028
https://eprint.iacr.org/2019/028
https://dx.doi.org/XXXXXXX.YXXXXXX
http://art.anoma.net


JRVJ15. Håvard D Johansen, Robbert Van Renesse,
Ymir Vigfusson, and Dag Johansen. Fireflies:
A secure and scalable membership and gossip
service. ACM Transactions on Computer Sys-
tems (TOCS), 33(2):1–32, 2015. (cit. on p. 5.)

KPSJ19. Gowtham Kaki, Swarn Priya, KC Sivaramakr-
ishnan, and Suresh Jagannathan. Mergeable
replicated data types. Proceedings of the ACM
on Programming Languages, 3(OOPSLA):1–29,
2019. (cit. on pp. 1, 2, and 4.)

KT22. Mirja Kühlewind and Brian Trammell. Appli-
cability of the quic transport protocol. 2022.
(cit. on p. 8.)

Per18. Trevor Perrin. The noise protocol framework.
2018. (cit. on p. 8.)

PKS22. Tommy Pauly, Eric Kinnear, and David Schi-
nazi. An unreliable datagram extension to
quic. 2022. (cit. on p. 8.)

Res18. Eric Rescorla. The transport layer security
(tls) protocol version 1.3. 2018. (cit. on p. 8.)

Sha24. Ehud Shapiro. Grassroots systems: Concept,
examples, implementation and applications,
2024. (cit. on pp. 1, 3, and 4.)

SPBZ11. Marc Shapiro, Nuno Preguiça, Carlos Ba-
quero, and Marek Zawirski. Conflict-free
replicated data types. In 13th International
Conference on Stabilization, Safety, and Secu-
rity of Distributed Systems, SSS 2011, pages
386–400. Springer LNCS volume 6976, Octo-
ber 2011. (cit. on pp. 1, 2, and 4.)

Sti05. Marc Stiegler. Petname systems. HP Labora-
tories, Mobile and Media Systems Laboratory,
Palo Alto, Tech. Rep. HPL-2005-148, 2005. (cit.
on p. 2.)

TT21. Martin Thomson and Sean Turner. Using tls
to secure quic. 2021. (cit. on p. 8.)

DOI: XXXXXXX.YXXXXXX Anoma Research Topics | | 9

https://dx.doi.org/XXXXXXX.YXXXXXX
http://art.anoma.net

	Introduction
	Design overview
	Network architecture


	System model
	Engines
	Communication patterns
	Message routing
	Message sending
	Message delivery
	Domains
	Immutable and mutable data
	Identities, names, and addresses
	Trust, reputation, and service commitments

	Network Architecture
	Networks
	Communication primitives
	Nodes
	Users
	Domains
	Pub/sub topics
	Pub/sub messages
	Immutable data
	Mutable data
	Join and external requests
	Membership

	Communication diagrams

	Node architecture
	Addressing
	Transport
	QUIC
	Connection establishment
	Serialization


	Concluding remarks
	Future work
	References
	References

